Role of atrial structural and functional changes in the development and progression of atrial fibrillation


Cite item

Full Text

Abstract

Atrial fibrillation (AF) is one of the most common reasons for decreased life quality and increased mortality rates. Experimental and clinical data show that atrial structural and functional changes contribute to the development and progression of AF. The survey article considers the role of the systemic and local activities of the renin-angiotensin-aldosterone system and inflammatory mediators in the development of atrial structural remodeling, which may be a cause and a consequence of AF.

Full Text

Роль изменений структуры и функции предсердий в развитии и прогрессировании фибрилляции предсердий. - Аннотация. Фибрилляция предсердий (ФП), или мерцательная аритмия (МА), - одна из распространенных причин снижения качества жизни и увеличения смертности населения. По данным экспериментальных и клинических исследований, изменения структуры и функции предсердий создают условия для развития и прогрессирования МА. В обзорной статье рассмотрена роль системного и локального действия ренин-ангиотензин-альдостероновой системы и медиаторов воспаления в развитии структурного ремоделирования предсердий, которое может являться как причиной, так и следствием МА.
×

References

  1. Stewart S., Hart C.L., Hole D.J. et al. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. Heart 2001; 86 (5): 516-521.
  2. Ball J., Carrington M.J., McMurray J.J. et al. Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century. Int J Cardiol 2013; 67 (5): 1807-1824.
  3. ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): Developed in Collaboration With the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006; 114: 257-354.
  4. Pfeffer J.M., Pfeffer M.A., Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 1985; 57 (1): 84-95.
  5. Gottdiener J.S., Kitzman D.W., Aurigemma G.P. et al. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons ≥65 years of age (the cardiovascular health study. Am J Cardiol 2006; 97 (1): 83-89.
  6. Дедов Д.В., Иванов А.П., Эльгардт И.А. Влияние электромеханического ремоделирования сердца на развитие фибрилляции предсердий у больных ИБС и Артериальной гипертензией. Рос кардиол журн 2011; 4: 1-13.
  7. Leibowitz D., Stessman-Lande I., Jacobs J. et al. Cardiac structure and function in persons 85 years of age. Am J Cardiol 2011; 108 (3): 465-470.
  8. Nikitin N.P., Witte K.K., Thackray S.D. et al. Effect of age and sex on left atrial morphology and function. Eur J Echocardiogr 2003; 4 (1): 36-42.
  9. Triposkiadis F., Tentolouris K., Androulakis A. et al. Left atrial mechanical function in the healthy elderly: new insights from a combined assessment of changes in atrial volume and transmitral flow velocity. J Am Soc Echocardiogr 1995; 8 (6): 801-809.
  10. Aime-Sempe C., Folliguet T., Rucker-Martin C. et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol 1999; 34 (5): 1577-1586.
  11. Dernellis J., Stefanadis C., Toutouzas P. From science to bedside: the clinical role of atrial function. Eur Heart J 2000; 2 (Suppl K): K48-K57.
  12. Ravelli F., Masè M., del Greco M. et al. Acute atrial dilatation slows conduction and increases AF vulnerability in the human atrium. J Cardiovasc Electrophysiol 2011; 22 (4): 394-401.
  13. Medi C., Kalman J.M., Spence S.J. et al. Atrial electrical and structural changes associated with longstanding hypertension in humans: implications for the substrate for atrial fibrillation. Cardiovasc Electrophysiol 2011; 22 (12): 1317-1324.
  14. Kistler P.M., Sanders P., Fynn S.P. et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol 2004; 44 (1): 109-116.
  15. Anyukhovsky E.P., Sosunov E.A., Chandra P. et al. Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc Res 2005; 66 (2): 353-363.
  16. Wijffels M., Kirchhof C., Dorland R. et al. Atrial Fibrillation Begets Atrial Fibrillation. Circulation 1995; 92: 1954-1968.
  17. Morillo C.A., Klein G.J., Jones D.L. et al. Chronic Rapid Atrial Pacing. Structural, Functional, and Electrophysiological Characteristics of a New Model of Sustained Atrial Fibrillation. Circulation 1995; 91: 1588-1595.
  18. Platonov P.G., Ivanov V., Ho S.Y. et al. Left atrial posterior wall thickness in patients with and without atrial fibrillation: data from 298 consecutive autopsies. J Cardiovasc Electrophysiol 2008; 19 (7): 689-692.
  19. Митрофанова Л.Б., Платонов П.Г. Морфология межпредсердной перегородки и межпредсердных соединений у больных с фибрилляцией предсердий. Вестн аритмол 2002; 30: 43-49.
  20. Laki D., Parascan L., Candea V. Atrial structural remodeling in patients with atrial chronic fibrillation and in animal models. Rom J Morphol Embryol 2011; 52 (1): 95-98.
  21. Platonov P.G., Mitrofanova L.B., Orshanskaya V. et al. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J Am Coll Cardiol 2011; 58 (21): 2225-2232.
  22. Qian Y., Meng J., Tang H. et al. Different structural remodelling in atrial fibrillation with different types of mitral valvular diseases. Europace 2010; 12 (3): 371-377.
  23. Sankaranarayanan R., Kirkwood G., Dibb K. et al. Comparison of Atrial Fibrillation in the Young versus That in the Elderly: A Review. Cardiol Res Pract 2013, Article ID 976976, 16.
  24. Sitges M., Teijeira V.A., Scalise A. et al. Is there an anatomical substrate for idiopathic paroxysmal atrial fibrillation? A case-control echocardiographic study. Europace 2007; 9 (5): 294-298.
  25. Shin S.Y., Lim H.E., Choi U.J. et al. Impaired transport function of the left atrium in patients with lone paroxysmal atrial fibrillation. Echocardiography 2011; 28 (1): 44-51.
  26. Frustaci A., Chimenti C., Bellocci F. et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 1997; 96: 1180-1184.
  27. Fromer M., Genton C., Schlaepfer J. et al. Is there an isolated arrhythmogenic right atrial myocarditis? Eur Heart J 1990; 11 (6): 566-571.
  28. Frustaci A., Cameli S., Zeppilli P. Biopsy evidence of atrial myocarditis in an athlete developing transient sinoatrial disease. Chest 1995; 108 (5): 1460-146.
  29. Fuchs T., Baron E.L., Leitman M. et al. Does Chronic Atrial Fibrillation Induce Cardiac Remodeling? Echocardiography 2013; 30 (2): 140-146.
  30. Imada M., Funabashi N., Asano M. et al. Anatomical remodeling of left atria in subjects with chronic and paroxysmal atrial fibrillation evaluated by multislice computed tomography. Int J Cardiol 2007; 119 (3): 384-388.
  31. Arriagada G., Berruezo A., Mont L. et al. Predictors of arrhythmia recurrence in patients with lone atrial fibrillation. Europace 2008; 10 (1): 9-14.
  32. Marchese P., Malavasi V., Rossi L. et al. Indexed left atrial volume is superior to left atrial diameter in predicting nonvalvular atrial fibrillation recurrence after successful cardioversion: a prospective study. Echocardiography 2012; 29 (3): 276-284.
  33. Nakamura K., Funabashi N., Uehara M. et al. Left atrial wall thickness in paroxysmal atrial fibrillation by multislice-CT is initial marker of structural remodeling and predictor of transition from paroxysmal to chronic form. Int J Cardiol 2011; 148 (2): 139-147.
  34. Potpara T.S., Stankovic G.R., Beleslin B.D. et al. A 12-year follow-up study of patients with newly diagnosed lone atrial fibrillation: implications of arrhythmia progression on prognosis: the Belgrade Atrial Fibrillation study. Chest 2012; 141 (2): 339-347.
  35. Kim Suvarna S. General Considerations and Anatomy. In: S. Kim Suvarna. Cardiac Pathology. A guide to current practice. Springer 2013: 1-17.
  36. Vasquez C., Benamer N., Morley G.E. The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts. J Cardiovasc Pharmacol 2011; 57 (4): 380-388.
  37. Wight T.N., Potter-Perigo S. The extracellular matrix: an active or passive player in fibrosis? Am J Physiol Gastrointest Liver Physiol 2011; 301 (6): G950- G955.
  38. Fan D., Takawale A., Lee J. et al. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 2012; 5 (1): 15.
  39. Burstein B., Libby E., Calderone A. et al. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 2008; 117 (13): 1630-1641.
  40. Dugina V., Alexandrova A., Chaponnier C. et al. Rat fibroblasts cultured from various organs exhibit differences in alpha-smooth muscle actin expression, cytoskeletal pattern, and adhesive structure organization. Exp Cell Res 1998; 238: 481-490.
  41. Hunter R.J., Liu Y., Lu Y. et al. Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ Arrhythm Electrophysiol 2012; 5 (2): 351-360.
  42. Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 1984; 352: 685-701.
  43. Bustamante J.O., Ruknudin A., Sachs F. Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. J Cardiovasc Pharm 1991; 17: S110-S113.
  44. Ruknudin A., Sachs F., Bustamante J.O. Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol 1993; 264: H960-H972.
  45. Zhang Y.H., Youm J.B., Sung H.K. et al. Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol 2000; 523 Pt 3: 607-619.
  46. Hagiwara N., Masuda H., Shoda M. et al. Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol 1992; 456: 285-302.
  47. Sato R., Koumi S. Characterization of the stretch-activated chloride channel in isolated human atrial myocytes. J Membr Biol 1998; 163: 67-76.
  48. Bode F., Katchman A., Woosley R.L. et al. Gadolinium Decreases Stretch-Induced vulnerability to Atrial Fibrillation. Circulation 2000; 101: 2200-2213.
  49. Kamkin A., Kiseleva I., Lozinsky I. The Role of Mechanosensitive Fibroblasts in the Heart: Evidence from Acutely Isolated Single Cells, Cultured Cells and from Intracellular Microelectrode Recordings on Multicellular Preparations from Healthy and Diseased Cardiac Tissue. In: Kamkin A., Kiseleva I. Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues. Volume 3. Dordrecht, Heidelberg, London, New York: Springer 2010: 239-266.
  50. Kovalchuk L.V., Khoreva M.V., Nikonova A. et al. Mechanical Stretching of Cells of Different Tissues: The Role of Mediators of Innate Immunity. In: Kamkin A., Kiseleva I. Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues. Volume 5. Dordrecht, Heidelberg, London, New York: Springer 2012: 35-58.
  51. Moriwaki H., Stempien-Otero A., Kremen M. et al. Overexpression of urokinase by macrophages or deficiency of plasminogen activator inhibitor type 1 causes cardiac fibrosis in mice. Circ Res 2004; 95 (6): 637-644.
  52. Caglayan E., Stauber B., Collins A.R. et al. Differential Roles of Cardiomyocyte and Macrophage Peroxisome Proliferator-Activated Receptor γ in Cardiac Fibrosis. Diabetes 2008; 57 (9): 2470-2479.
  53. Huang Z.G., Jin Q., Fan M. et al. Myocardial remodeling in diabetic cardiomyopathy associated with cardiac mast cell activation. PLoS One 2013; 8 (3): e60827.
  54. Liao C.H., Akazawa H., Tamagawa M. et al. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J Clin Invest 2010; 120 (1): 242-253.
  55. Schunkert H., Dzau V.J., Than S.S. et al. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure-overload left ventricular hypertrophy. J Clin Invest 1990; 86: 1913-1920.
  56. Hirsch A.T., Talsness C.E., Schunkert H. et al. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 1991; 69: 475-482.
  57. Urata H., Healy B., Stewart R.W. et al. Angiotesin II receptors in normal and failing human hearts. J Clin Endocrinol Metab 1989; 69: 54-66.
  58. Touyz R.M., Sventec P., Lariviere R. et al. Cytosolic calcium changes induced by angiotesin II in neonatal rat atrial and ventricular cardiomyocytes are mediated via angiotesin II subtype 1 receptors. Hypertension 1996; 27: 1090-1096.
  59. Opie L.H. Angiotensin-Converting Enzyme Inhibitors, Third Edition. University of Cape Town Press 1999: 2-18, 118-123.
  60. Yang F., Chung A.C., Huang X.R. et al. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 2009; 54 (4): 877-884.
  61. Kawano H., Do Y.S., Kawano Y. et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 2000; 101 (10): 1130-1137.
  62. Visse R., Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ Res 2003; 92: 827-839.
  63. Nakano Y., Niida S., Dote K. et al. Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J Am Coll Cardiol 2004; 43 (5): 818-825.
  64. Hui Zhu, Wei Zhang, Yun Zhang. Effect of matrix metalloproteinase-9 and tissue inhibitor-1 of metalloproteinase expression on atrial structural remodeling during chronic atrial fibrillation. Heart Rhythm 2005; 2 (5): S261.
  65. Polyakova V., Miyagawa S., Szalay Z. et al. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J Cell Mol Med 2008; 12 (1): 189-208.
  66. Mukherjee R., Herron A.R., Lowry A.S. et al. Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. Am J Cardiol 2006; 97 (4): 532-537.
  67. Leask A., Abraham D.J. TGF-beta signaling and the fibrotic response. FASEB J 2004; 18 (7): 816-827.
  68. Redondo S., Navarro-Dorado J., Ramajo M. et al. The complex regulation of TGF-Β in cardiovascular disease. Vasc Health Risk Manag 2012; 8: 533-539.
  69. Xiao H., Lei H., Qin S. et al. TGF-beta1 expression and atrial myocardium fibrosis increase in atrial fibrillation secondary to rheumatic heart disease. Clin Cardiol 2010; 33 (3): 149-156.
  70. Yeh Y.H., Kuo C.T., Chan T.H. et al. Transforming growth factor-Β and oxidative stress mediate tachycardia-induced cellular remodelling in cultured atrial-derived myocytes. Cardiovasc Res 2011; 91 (1): 62-70.
  71. Choi E.K., Chang P.C., Lee Y.S. et al. Triggered firing and atrial fibrillation in transgenic mice with selective atrial fibrosis induced by overexpression of TGF-Β1. Circ J 2012; 76 (6): 1354-1362.
  72. Verheule S., Sato T., Everett T. et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res 2004; 94 (11): 1458-1465.
  73. Wang Y., Hou X., Li Y. Association between transforming growth factor beta1 polymorphisms and atrial fibrillation in essential hypertensive subjects. J Biomed Sci 2010; 17: 23.
  74. Lombardi F., Belletti S., Battezzati P.M. et al. MMP-1 and MMP-3 polymorphism and arrhythmia recurrence after electrical cardioversion in patients with persistent atrial fibrillation. J Cardiovasc Med (Hagerstown) 2011; 12 (1): 37-42.
  75. Kim S.K., Park J.H., Kim J.Y. et al. High plasma concentrations of transforming growth factor-Β and tissue inhibitor of metalloproteinase-1: potential non-invasive predictors for electroanatomical remodeling of atrium in patients with non-valvular atrial fibrillation. Circ J 2011; 75 (3): 557-564.
  76. Okumura Y., Watanabe I., Nakai T. et al. Impact of biomarkers of inflammation and extracellular matrix turnover on the outcome of atrial fibrillation ablation: importance of matrix metalloproteinase-2 as a predictor of atrial fibrillation recurrence. J Cardiovasc Electrophysiol 2011; 22 (9): 987-993.
  77. Reinecke H., Brand E., Mesters R. et al. Dilemmas in the management of atrial fibrillation in chronic kidney disease. Am Soc Nephrol 2009; 20 (4): 705-711.
  78. Kobayashi Y., Giles J.T., Hirano M. et al. Assessment of myocardial abnormalities in rheumatoid arthritis using a comprehensive cardiac magnetic resonance approach: a pilot study. Arthritis Res Ther 2010; 12 (5): R171.
  79. Teixeira R.A., Borba E.F., Bonfá E. et al. Arrhythmias in systemic lupus erythematosus. Rev Bras Reumatol 2010; 50 (1): 81-89.
  80. Sabol F., Jakubová M., Mitro P. et al. Is there a relationship between inflammatory markers, oxidative stress and postoperative atrial fibrillation? [Abstract]. Vnitr Lek 2012; 58 (10): 730-734.
  81. Aviles R.J., Martin D.O., Apperson-Hansen C. Inflammation as a risk factor for atrial fibrillation. Circulation 2003; 108 (24): 3006-3010.
  82. Asselbergs F.W., van den Berg M.P., Diercks G.F. et al. C-reactive protein and microalbuminuria are associated with atrial fibrillation. Int J Cardiol 2005; 98 (1): 73-77.
  83. Conen D., Ridker P.M., Brendan M. et al. A multimarker approach to assess the influence of inflammation on the incidence of atrial fibrillation in women. Eur Heart J 2010; 31 (14): 1730-1736.
  84. Dispersyn G.D., Ausma J., Thoné F. et al. Cardiomyocyte remodelling during myocardial hibernation and atrial fibrillation: prelude to apoptosis. Cardiovasc Res 1999; 43 (4): 947-957.
  85. Disertori M., Barlera S., Staszewsky L. et al. Systematic review and meta-analysis: renin-Angiotensin system inhibitors in the prevention of atrial fibrillation recurrences: an unfulfilled hope. Cardiovasc Drugs Ther 2012; 26 (1): 47-54.
  86. Goette A. The vanishing story of angiotensin II receptor blockers in the treatment of atrial fibrillation. Europace 2011; 13 (4): 451-452.
  87. Disertori M., Latini R., Barlera S. et al. Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med 2009; 360 (16): 1606-1617.
  88. Yusuf S., Healey J.S., Pogue J. et al. Irbesartan in patients with atrial fibrillation. N Engl J Med 2011; 364 (10): 928-938.
  89. Deftereos S., Giannopoulos G., Kossyvakis C. et al. Colchicine for Prevention of Early Atrial Fibrillation Recurrence After Pulmonary Vein Isolation. A Randomized Controlled Study. J Am Coll Cardiol 2012; 60 (18): 1790-1796.
  90. Brucato A., Ferrazzi P. Colchicine Reduces Postoperative Atrial Fibrillation. Results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) Atrial Fibrillation Substudy. Circulation 2011; 124: 2290-2295.
  91. Lijnen P.J., Petrov V.V., Turner M. et al. Collagen production in cardiac fibroblasts during inhibition of aminopeptidase B. J Renin Angiotensin Aldosterone Syst 2005; 6 (2): 69-77.
  92. Li X., Ma C., Dong J. et al. The fibrosis and atrial fibrillation: is the transforming growth factor-beta 1 a candidate etiology of atrial fibrillation. Med Hypotheses 2008; 70 (2): 317-319.
  93. Lee K.W., Everett T.H., Rahmutula D. et al. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation 2006; 114 (16): 1703-1712.
  94. Kulkarni A.B., Karlsson S. Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol 1993; 143: 3-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies