Angioprotektivnoe properties lowering drugs from the group of inhibitors of dipeptidyl peptidase-4


Cite item

Full Text

Abstract

Diabetes mellitus (DM) is a major health problem in all developed countries. It contributes to the development of atherosclerosis and increases the risk of cardiovascular events so blood glucose level correction is essential to preventing these complications. The relatively new and promising class of anti-diabetic drugs is dipeptidyl peptidase-4 inhibitors. By improving carbohydrate metabolism, they have angioprotective effects, such as anti-inflammatory and anti-atherosclerotic ones, including atherosclerotic plaque stabilization, improve endothelial function, lower blood pressure, and reduce the severity of albuminuria, which may have clinical implications for the prevention of macrovascular complications of type 2 DM.

Full Text

Ангиопротективные свойства сахароснижающих препаратов из группы ингибиторов дипептидилпептидазы-4. - Аннотация. Сахарный диабет (СД) - важная проблема здравоохранения экономически развитых странах. Наличие СД 2-го типа (СД-2) способствует развитию атеросклероза и повышает риск развития сердечно-сосудистых осложнений (ССО), поэтому коррекция уровня глюкозы в крови является важнейшим условием профилактики этих осложнений. Сравнительно новый и перспективный класс противодиабетических препаратов - ингибиторы дипептидилпептидазы-4 (ДПП-4). Помимо улучшения углеводного обмена, они оказывают такие ангиопротективные эффекты, как противовоспалительный, антиатеросклеротический, включая стабилизацию атеросклеротической бляшки, улучшают функцию эндотелия, снижают артериальное давление и уменьшают выраженность альбуминурии, что может иметь клиническое значение для предотвращения макрососудистых осложнений СД-2.
×

About the authors

E V Oskola

A T Shubina

Iu A Karpov

References

  1. Аметов А.С. Сахарный диабет 2 типа. Уч. пос. М 2003: 7-62.
  2. Трунина Е.Н., Петунина Н.А., Чорбинская С.А. Ингибиторы дипептидилпептидазы-4 в лечении сахарного диабета 2 типа. Возможности кардиопротекции. Сахарный диабет 2011; 2: 59-64.
  3. Gerstein H.C., Pogue J., Mann J.F. et al. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological analysis. Diabetologia 2005; 48 (9): 1749-1755.
  4. Selvin E., Marinopoulos S., Berkenblit G. et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 2004; 141 (6): 421-431.
  5. Implications of the United Kingdom Prospective Diabetes Study. American Diabetes Assosiation. Clin Diab 1999; 17 (1): 5-12.
  6. Cobble M.E., Frederich R. Saxagliptin for the treatment of type 2 diabetes mellitus: assessing cardiovascular data. Cardiovasc Diabetol 2012; 11: 6.
  7. Аметов А.С., Карпова Е.В. Новая возможность достижения цели лечения пациентов с сахарным диабетом 2 типа. Рус мед журн 2008; 28: 1854-1857.
  8. Davis T.M., Coleman R.L., Holman R.R.; UKPDS Group. Prognostic Significance of Silent Myocardial Infarction in Newly Diagnosed Type 2 Diabetes Mellitus: United Kingdom Prospective Diabetes Study (UKPDS). Circulation 2013; 127 (9): 980-987.
  9. Schwartz A.V., Margolis K.L., Sellmeyer D.E. et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial. Diabetes Care 2012; 35 (7): 1525-1531.
  10. Аметов А.С. Современные методы терапии сахарного диабета 2 типа. Рус мед журн. Избранные лекции для семейных врачей 2008: 4-170.
  11. Мкртумян А.М. Патофизиологический подход в лечении сахарного диабета 2 типа. Леч врач 2008; 3. Доступно на: http://www.lvrach.ru/2008/03/4912915/
  12. Аметов А.С. Регуляция секреции инсулина в норме и при сахарном диабете 2 типа: роль инкретинов. Рус мед журн 2006; 26: 1867-1871.
  13. Аметов А.С., Карпова Е.В. Клиническое использование ингибитора ДПП-4 - вилдаглиптина при сахарном диабете 2 типа. Рус мед журн 2010; 14: 887-892.
  14. Дедов И.И., Шестакова М.В., Аметов А.С. и др. Консенсус совета экспертов Российской ассоциации эндокринологов (РАЭ) по инициации и интенсификации сахароснижающей терапии СД 2 типа. Сахарный диабет 2011; 1: 95-105.
  15. Kjems L.L., Hoist J.J., Volund A. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380-386.
  16. Аметов А.С., Карпова Е.В. Инкретиномиметики - новый этап в лечении сахарного диабета 2-го типа. Рус мед журн 2010; 23: 1410-1416.
  17. Fehmann H.C., Habener J.F. Insulinotropic hormone glucagon-like peptide-1(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocriniligy 1992; 130: 159-166.
  18. Bloomgarden Z.T., Dodis R., Viscoli C.M. Lower baseline glycemia reduces apparent oral agent glucose-lowering efficacy: a meta-regression analysis. Diabetes Care 2006; 29: 2137-2139.
  19. Perfetti R. The role of GLP-1 in the regulation of the islet cell mass. Medscape Diabet Endocrinol 2004; 6 (2): 134-138.
  20. Nauck M.A., Hoist J.J., Willms B. Glucagon-like peptide-1 and its potential in the treatment of non-insulin-dipendent diabetes mellitus. Horm Metab Res 1997; 29: 411-416.
  21. Ehses J.A., Casilla V.R., Doty T. et al. Glucose-dependent insulinotropic polypeptide promotes beta-(INS-1) cell survival via cyclic adenosine monophophatemediated caspase-3 inhibition and regulation of p38 mitogen-avtivated protein kinase. Endocrinology 2003; 144: 4433-4445.
  22. Trumper A., Trumper K., Trusheim H. et al. Glucose-dependent insulinotropic polypeptide is a growth factor for beta-(INS-1) cells by pleiotropic signalling. Mol Endocrinol 2001; 15: 1559-1570.
  23. Trumper A., Trumper K., Horsch D. Mechanism of mitogenic and anti-apoptotic signalling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells. J Endocrinol 2002; 174: 233-246.
  24. Meier J.J., Galwitz B., Siepmann N. et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 2003; 46: 798-801.
  25. Yip R.G., Boylan M.O., Kiefer T.J., Wolfe M.M. Functional GIP receptors are present on adipocytes. Endocrinology 1998; 139: 4004-4007.
  26. Eckel R.H., Fujimoto W.Y., Brunzell J.D. Gastric inhibitory polypeptide enhanced lipoprotein activity in cultured preadipocytes. Diabetes 1979; 28: 1141-1142.
  27. Oben J., Morgan L.M., Fletcher J., Maarks V. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36)amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol 1991; 130: 267-272.
  28. Knapper J.M., Puddicombe S.M., Morgan L.M., Fletcher J.M. Investigations into the actions of glucose-dependent insulinotropic polypeptide and glucagons-like peptide-1(7-36) amide on lipoprotein lipase activity in explants of rat adipose tissue. J Nutr 1995; 125: 183-188.
  29. Beck B., Max J.P. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat. Regul Pept 1983; 7: 3-8.
  30. Deacon C.F., Nauck M.A., Toft-Nielsen M.B. et al. Both subcutanneously and intravenously administered gluccagon-like peptide 1 are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995; 44: 1126-1131.
  31. Deacon C.F., Nauck M.A., Meier J. et al. Degradation of endogenous and exogenous gastri inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000; 85: 3575-3581.
  32. Pederson R.A., Kieffer T.J., Pauly R. et al. The enteroinsular axis in dipeptidyl peptidase IV-negative rats. Metabolism 1996; 45: 1335-1341.
  33. Kiefer T.J., Cintosh C.H.S., Pederson R.A. Degradation of Glucose-dependent Insulinotropic Polypeptide and Truncated Glucagon-like Peptide-1 in-vitro and in-vivo by Dipeptidyl Peptidase-IV. Endocrinology 1995; 136: 3585-3596.
  34. Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 1999; 85: 9-24.
  35. Makdissi A., Ghanim H., Vora M. еt al. Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab 2012; 97 (9): 3333-3341.
  36. White J. Efficacy and safety of incretin based therapies: clinical trial data. J Am Pharm Assoc 2009; 49 (1): S30-40.
  37. Chrysant S.G., Chrysant G.S. Clinical implications of cardiovascular preventing pleiotropic effects of dipeptidyl peptidase-4 inhibitors. Am J Cardiol 2012; 109 (11): 1681-1685.
  38. Shah Z., Kampfrath T., Deiuliis J.A. еt al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 2011; 124 (21): 2338-2349.
  39. Terasaki M., Nagashima M., Watanabe T. еt al. Effects of PKF275-055, a dipeptidyl peptidase-4 inhibitor, on the development of atherosclerotic lesions in apolipoprotein E-null mice. Metabolism 2012; 61 (7): 974-977.
  40. Matsubara J., Sugiyama S., Sugamura K. еt al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol 2012; 59 (3): 265-276.
  41. Derosa G., Maffioli P., Ferrari I. еt al. Effects of one year treatment of vildagliptin added to pioglitazone or glimepiride in poorly controlled type 2 diabetic patients. Horm Metab Res 2010; 42 (9): 663-669.
  42. Satoh-Asahara N., Sasaki Y., Wada H. еt al. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients. Metabolism 2013; 62 (3): 347-351.
  43. Lim S., Choi S.H., Shin H. еt al. Effect of a dipeptidyl peptidase-IV inhibitor, des-fluoro-sitagliptin, on neointimal formation after balloon injury in rats. PLoS One 2012; 7 (4): e35007.
  44. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005; 115: 911-919.
  45. Vittone F., Liberman A., Vasic D. еt al. Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe (-/-) mice. Diabetologia 2012; 55 (8) :2267-2275.
  46. Аметов А.С., Кулиджанян Н.К., Шурупова И.В. и др. Влияние ингибиторов дипептидилпептидазы-4 на функциональное состояние миокарда у больных сахарным диабетом 2 типа. Фарматека 2012; 10: 79-86.
  47. Matikainen N., Taskinen M.R. The effect of vildagliptin therapy on atherogenic postprandial remnant particles and LDL particle size in subjects with Type 2 diabetes. Diabet Med 2013; 30 (6): 756-757.
  48. Johansen O.E., Neubacher D., von Eynatten M. Cardiovascular safety of linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme. Cardiovasc Diabetol 2012; 11: 3.
  49. Liu L., Liu J., Wong W.T. еt al. Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension 2012; 60 (3): 833-841.
  50. Mason R.P., Jacob R.F., Kubant R. еt al. Effect of enhanced glycemic control with saxagliptin on endothelial nitric oxide release and CD40 levels in obese rats. J Atheroscler Thromb 2011; 18 (9): 774-783.
  51. Kubota Y., Miyamoto M., Takagi G. еt al. The dipeptidyl peptidase-4 inhibitor sitagliptin improves vascular endothelial function in type 2 diabetes. J Korean Med Sci 2012; 27 (11): 1364-1370.
  52. van Poppel P.C., Netea M.G., Smits P. еt al. Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care 2011; 34 (9): 2072-2077.
  53. Funahashi T., Nakamura T., Shimomura I. еt al. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 1999; 38: 202-206.
  54. Matsuzawa Y., Funahashi T., Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N YAcad Sci 1999; 892: 146-154.
  55. Matsui T., Nishino Y., Takeuchi M. еt al. Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol Res 2011; 63 (5): 383-388.
  56. Lenski M., Kazakov A., Marx N. et al. Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 2011; 51 (6): 906-918.
  57. Ye Y., Perez-Polo J.R., Aguilar D. еt al. The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 2011; 106 (6): 925-952.
  58. Ye Y., Keyes K.T., Zhang C. еt al. The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 2010; 298 (5): H1454-1465.
  59. Rahmi R.M., Uchida A.H., Rezende P.C. еt al. Effect of hypoglycemic agents on ischemic preconditioning in patients with type 2 diabetes and symptomatic coronary artery disease. Diabetes Care 2013; 36 (6): 1654-1659.
  60. Yin M., Silljé H.H., Meissner M. еt al. Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol 2011 Sep 28;10:85. doi: 10.1186/1475-2840-10-85.
  61. Hocher B., Sharkovska Y., Mark M. еt al. The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats. Int J Cardiol 2013; 167 (1): 87-93.
  62. Mason R.P., Jacob R.F., Kubant R. еt al. Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats. J Cardiovasc Pharmacol 2012; 60 (5): 467-473.
  63. Liu W.J., Xie S.H., Liu Y.N. et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 2012; 340 (2): 248-255.
  64. Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J 2011; 58 (1): 69-73.
  65. Gallwitz B. Emerging DPP-4 inhibitors: focus on linagliptin for type 2 diabetes. Diabetes Metab Syndr Obes 2013; 6: 1-9.
  66. Engel S.S., Golm G.T., Shapiro D. et al. Cardiovascular safety of sitagliptin in patients with type 2 diabetes mellitus: a pooled analysis. Сardiovasc Diabetol 2013; 12 (1): 3.
  67. Gallwitz B., Uhlig-Laske G., Bhattacharaya S. еt al. Linagliptin has similar efficacy to glimepiride but improved cardiovascular safety over 2 years in patients with type 2 diabetes inadequately controlled on metformin. Am Diabetes Association 2011 Scientific Sessions; 2011.
  68. Johansen O.E., Neubacher D., von Eynatten M. еt al. Cardiovascular safety with linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme. Cardiovasc Diabetol 2012; 11: 3.
  69. White W.B., Bakris G.L., Bergenstal R.M. еt al. EXamination of cArdiovascularoutcoMes with alogliptIN versus standard of carE in patients with type 2 diabetes mellitus and acute coronary syndrome (EXAMINE): a cardiovascular safety study of the dipeptidyl peptidase 4 inhibitor alogliptin in patients with type 2 diabetes with acute coronary syndrome. Am Heart J 2011; 162 (4): 620-626.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies