Deformation, rotation, and axial torsion of the left ventricle in coronary heart disease patients with its severe dysfunction


Cite item

Full Text

Abstract

Aim. To evaluate global left ventricular (LV) systolic longitudinal and circumferential strain rates, rotation, and axial torsion in relation to the type of postinfarction LV remodeling in patients with coronary heart disease (CHD) and severe LV dysfunction. Subjects and methods. Studies were performed in 58 patients with sustained anterior myocardial infarction, an ejection fraction of less than 40%, and NYHA Functional Class III-IV heart failure. Three types of postinfarction LV remodeling were identified: 1) with LV apical aneurysm; 2) an intermediate type; 3) with ischemic cardiomyopathy. Global LV systolic longitudinal and circumferential strain rates, end-systolic basal (RotMV/RotMV) and apical (Rotapex/RotRapex) rotation, and axial torsion axis were estimated as an indicator of global LV systolic function. Results. No differences were found in the basal global LV longitudinal and circumferential strain rates, basal rotation, and rotation rate between the patients with 3 types of LV remodeling. In the patients with type 1 LV remodeling, the basal rotation was higher than the apical one (RotMV - Rotapex: -3.085±2.821 versus 2.293±1.021; p=0,002; RotRMV - RotRapex: -22.452±19.823/с-1 versus 13.641±10.745/с-1; p=0.003). In type 2 postinfarction LV remodeling, the basal and apical rotation values did not differ statistically significantly. Impaired apical rotation (in a clockwise direction) was identified in 5 of the 16 patients with type 3 LV remodeling (Rotapex: -1.477±0.392; RotRapex: -30.572±13.735/с-1). There were no differences in the value of LV axial torsion between types 1 and 2 LV postinfarction remodeling (Type 1, 6.714±3.017; Type 2, 7.463±5.416). Conclusion. It was shown for the first time that there were no differences in global LV longitudinal and circumferential strain rates and end-systolic LV rotation between the patients with types 1 and 2 postinfarction LV remodeling.

Full Text

Деформация, ротация и поворот по оси левого желудочка у больных ишемической болезнью сердца с тяжелой левожелудочковой дисфункцией. - Резюме. Цель исследования. Оценить глобальную деформацию левого желудочка (ЛЖ) в продольном направлении и по окружности в систолу, ротацию и поворот по оси ЛЖ в зависимости от типа постинфарктного ремоделирования ЛЖ у больных ИБС и тяжелой левожелудочковой дисфункцией. Материалы и методы. Исследования выполнены у 58 пациентов с перенесенным передним инфарктом миокарда, фракцией выброса менее 40% и сердечной недостаточностью III-IV функционального класса по классификации NYHA. Выделены 3 типа постинфарктного ремоделирования ЛЖ: I - с аневризмой верхушки ЛЖ; II - промежуточный вариант; III - с ишемической кардиомиопатией. В качестве показателя глобальной систолической функции ЛЖ оценивали глобальную деформацию в продольном направлении (Global Longitudinal Stain/Strain Rate) и по окружности (Global Circumferential Strain/Strain Rate), ротацию в конце систолы на базальном (RotMV/RotRMV), верхушечном уровне (Rotapex/RotRapex,) и поворот по оси ЛЖ (Torsion).Результаты. Не выявлено различий по величине глобальной деформации ЛЖ в продольном направлении и по окружности, ротации и скорости ротации ЛЖ на базальном уровне между пациентами c 3 типами ремоделирования ЛЖ. У больных с I типом ремоделирования ротация на базальном уровне была выше ротации на уровне верхушки (RotMV - Rotapex: -3,085±2,821 против 2,293±1,021; p=0,002; RotRMV - RotRapex: -22,452±19,823/с-1 против 13,641±10,745/с-1; p=0,003). При II типе постинфарктного ремоделирования значения ротации на базальном и верхушечном уровне статистически значимо не различались. Обнаружено нарушение ротации верхушки (движение по часовой стрелке) у 5 из 16 больных с III типом ремоделирования ЛЖ (Rotapex: -1,477±0,392; RotRapex: -30,572±13,735/с-1). Не выявлено различий по величине поворота по оси ЛЖ между пациентами с I и II типами постинфарктного ремоделирования ЛЖ (I тип: 6,714±3,017; II тип: 7,463±5,416). Заключение. Впервые показано отсутствие различий по глобальной деформации ЛЖ по длинной оси, окружности, ротации ЛЖ в конце систолы между больными с I и II типами постинфарктного ремоделирования.
×

About the authors

E N Pavliukova

Email: pavlyuk@cardio.tsu.ru

R S Karpov

References

  1. Di Donato M., Castelvecchio S., Kukulski T. et al. Surgical ventricular restoration: Left ventricular shape influence on cardiac function, clinical status, and survival. Ann Thorac Surg 2009; 87: 455-462.
  2. Curtis J.P., Sokol S.I., Wang Y. et al. The association of left ventricular ejection fraction, mortality and cause of death in stable outpatients with heart failure. J Am Coll Cardiol 2003; 42: 736-742.
  3. Solomon S.D., Anavekar N., Skali H. et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation 2005; 112; 3738-3744.
  4. Urier N., Torre-Amione G., Milo O. et al. Echocardiographic ejection fraction in patients with acute heart failure: correlations with hemodynamic, clinical, and neurohormonal measures and short-term outcome. Eur J Heart Fail 2005; 7: 815-819.
  5. Sutherland G.R., Hatle L., Claus P. et al. Doppler Tissue Imaging. Belgium: BSWK 2006; 349.
  6. Geyer H., Caracciolo G., Abe H. et al. Assessment of myocardial mechanics using Speckle Tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 2010; 23: 351-369.
  7. Streеter D.D. Jr, Spotnitz H.M., Patel D.P. et al. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 1969; 24: 339-347.
  8. Henson R.E., Song S.K., Pastorek J.S. et al. Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol 2000; 278: H1117-1123.
  9. Opdahl A., Helle-Valle T., Remme E.W. et al. Apical rotation by Speckle Tracking echocardiography: a simplified bedside index of left ventricular twist. J Am Soc Echocardiogr 2008; 21: 1121-1128.
  10. Torrent-Guasp F., Buckberg G.D., Clemente C. et al. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Thor Cardiovasc Surg 2001; 13 (4): 301-319.
  11. McDonald I.G. The shape and movements of the human left ventricle during systole: a study by cineangiography and by cineradiography of epicardial markers. Am J Cardiol 1970; 26: 221-230.
  12. Rademakers F.E., Buchalter M.B., Rogers W.J. et al. Dissociation between left ventricular untwisting and filling: accentuation by catecholamines. Circulation 1992; 85: 1572-1581.
  13. Kroeker C.A., Ter Keurs H.E., Knudtson M.L. et al. An optical device to measure the dynamics of apex rotation of the left ventricle. Am J Physiol Heart Circ Physiol 1993; 265: H1444-H1449.
  14. Moon M.R., Ingels N.B. Jr, Daughters G.T. et al. Alterations in left ventricular twist mechanics with inotropic stimulation and volume loading in human subjects. Circulation 1994; 89: 142-150.
  15. Hansen D.E., Daughters G.T., Alderman E.L. et al. Effect of volume loading, pressure loading, and inotropic stimulation on left ventricular torsion in humans. Circulation 1991; 83: 1315-1326.
  16. Buchalter M.B., Rademakers F.E., Weiss J.L. et al. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischemia and pacing. Cardiovasc Res 1994; 28: 629-635.
  17. Kroeker C.A., Tyberg J.V., Beyar R. Effects of on left ventricular apical rotation: an experimental study in anesthetized dogs. Circulation 1995; 92: 3539-3548.
  18. Sandstede J.J.W., Johnson T., Harre K. et al. Cardiac systolic rotation and contraction before and after valve replacement for aortic stenosis: a myocardial tagging study using MR Imaging. Am J Roentgeno. 2002; 178: 953-958.
  19. Buchalter M.B., Weiss J.L., Rogers W.J. et al. Noninvasive quantification of left ventricular rotation deformation in normal human using magnetic resonance imaging myocardial tagging. Circulation 1990; 81: 1236-1244.
  20. Leitman M., Lysyansky P., Sidenko S. et al. Two dimension strain - a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 2004; 17: 1021-1029.
  21. Amundsen B.H., Helle-Valle T., Edvardsen T. et al. Noninvasive myocardial strain measurement by Speckle Tracking echocardiography. Validation against sonomicrometry and tagged magnetic resonance Imaging. J Am Coll Cardiol 2006; 47: 789-793.
  22. Шиллер Н.Б., Осипов М.А. Клиническая эхокардиография, второе издание. М: Практика 2005; 344.
  23. Lang R.M., Bierig M., Devereux R.B. et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 18: 1440-1463.
  24. Вилкенсхоф У., Крук И. Справочник по эхокардиографии. Пер. с нем. М: Медлит 2008; 240.
  25. Reisner S.A., Lysyansky P., Agmon Y. et al. Global longitudinal Strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr 2004; 17: 630-633.
  26. Helle-Valle T., Crosby J., Edvardsen T. et al. New noninvasive method for assessment of left ventricular rotation: Speckle Tracking echocardiography. Circulation 2005; 112 (15): 3149-3156.
  27. Notomi Y., Setser R.M., Shiota T. et al. Assessment of left ventricular torsional deformation by Doppler tissue Imaging. Validation study with tagged magnetic resonance Imaging. Circulation 2005; 111: 1141-1147.
  28. Sun J.P., Niu J., Chou D. et al. Alteration of regional myocardial function in a swine model of myocardial infarction assessed by echocardiographic 2-dimensional Strain Imaging. J Am Soc Echocardiogr 2007; 20: 498-504.
  29. Kim M.-S., Kim Y.-J., Kim H.-K. et al. Evaluation of left ventricular short and long axis function in severe mitral regurgitation using 2-dimension Strain echocardiography. Am Heart J 2009; 157: 345-351.
  30. Chetboul V., Serres F., Gouni V. et al. Noninvasive assessment of systolic left ventricular torsion by 2-dimensional Speckle Tracking Imaging in the awake dog: repeatability, reproducibility, and comparison with Tissue Doppler Imaging variables. J Vet Intern Med 2008; 22: 342-350.
  31. Govind S.C., Gadiyaram V.K., Quintamna M. et al. Study of left ventricular rotation and torsion in the acute phase of ST-elevation myocardial infarction by Speckle Tracking echocardiography. Echocardiography 2010; 27: 45-49.
  32. Han W., Xei M.X., Wang X.F. et al. Assessment of left ventricular torsion in patients with anterior wall myocardial infarction and after revascularization using Speckle Tracking Imaging. Chin Med J 2008; 212 (16): 1543-1548.
  33. Kim W.J., Lee B.H., Kim Y.J. et al. Apical rotation assessed by Speckle-Tracking echocardiography as an index of global left ventricular contractility. Circ Cardiovasc Imag 2009; 2 (2): 123-131.
  34. Nagel E., Stuber M., Lakatos M. et al. Cardiac rotation and relaxation after anterolateral myocardial infarction. Coron Artery Dis 2000; 11: 261-267.
  35. Takeuchi M., Nishikage T., Nakai H. et al. The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional Speckle Tracking Imaging. J Am Soc Echocardiogr 2007; 20: 36-44.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies