Total body water and recurrent atrial fibrillation


Cite item

Full Text

Abstract

Aim. To specify the relationship between content of total body water and recurrent atrial fibrillation (AF) of non-valvular etiology. Material and methods. Pharmacological amiodaron cardioversion followed by amiodaron supportive anti-arrhythmic therapy was made in 76 patients (47 males, 29 females, mean age 58 ± 8 years) with persistent AF of non-valvular etiology. Measurements were made of the height, body mass, arm circumference, thickness of the lipocutaneous fold above the biceps. Body mass index (BMI) and arm muscular circumference were estimated. Body composition was calculated according to Watson formula.
Results. Fifty three (70%) patients with recurrent AF had overweight or obesity. Body fat mass in patients with frequent (1 recurrence and more for 3 months) and rare AF recurrences did not significantly differ (24,4 ± 10,6 and 30,0 ± 13,8 kg, respectively; p = 0,064). Total body water was significantly less (36,8 ± 5,2 and 42,7 ± 5,4 kg, respectively; p = 0,0009) in patients with frequent AF recurrences. Multifactor regression analysis showed that content of total body water, irrespective of gender and age, inversely correlates with an early AF recurrence (R2 = 0,24; beta = -0,49; p = 0,0003). Conclusion. Low content of body water is associated with a risk of early AF recurrence.

About the authors

Maksim Vital'evich Menzorov

Aleksandr Mikhaylovich Shutov

Email: amshu@mail.ru

Valeriy Anatol'evich Serov

M V Menzorov

State Medical University, Ulianovsk

State Medical University, Ulianovsk

A M Shutov

State Medical University, Ulianovsk

State Medical University, Ulianovsk

V A Serov

State Medical University, Ulianovsk

State Medical University, Ulianovsk

References

  1. Moore F. D., Oleson K. M., McMurrey J. D. et al. The body cell mass and its supporting environment. Philadelphia: W. B. Saunders; 1963.
  2. Chumlea W. C., Guo S. S., Zeller C. M. et al. Total body water data for white adults 18-64 years of age. The Fels Longitudinal Study. Kidney lnt. 1999; 56: 224-252.
  3. Norris A. H., Lundy Т., Shock N. W. Trends in selected indices of body composition in men between ages 30 and 80 years. Ann. Acad. Sci. 1963; 110: 623-639.
  4. Chumlea W. C., Guo S. S., Zeller C. M. et al. Total body water reference values and prediction equations for adults. Kidney Int. 2001; 59: 2250-2258.
  5. Mukherjee A., Adams J. E., Smethurst L. et al. Interdependence of lean body mass and total body water, but not quality of life measures, during low dose GH replacement in GH-deficient adults. Eur. J. Endocrinol. 2005; 153: 661-668.
  6. Alonso A., Agarwal S. K., Soliman E. Z. et al. Incidence of atrial fibrillation in whites and African-Americans: the Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J. 2009; 158 (1): 111-711.
  7. ACC/AHA/ESC Guidelines for the management of patients with atrial fibrillation - executive summary. Eur. Heart J. 2006; 27: 1979-2030.
  8. Watson P. E., Watson I. D., Batt R. D. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 1980; 33: 27- 39.
  9. Ritz P., Vol S., Berrut G. et al. Influence of gender and body composition on hydration and body water spaces. Clin. Nutr. 2008; 27 (5): 740-746.
  10. Национальные рекомендации по диагностике и лечению фибрилляции предсердий. Кардиовас. тер. и профилакт. 2005; 4: Прил. 1.
  11. Levy S., Breithardt G., Campbell R. W. et al. Atrial fibrillation: current knowledge and recommendations for management. J. 1998; 19: 1294-1320.
  12. World Health Organization Expert Committee. Physical status, the use and interpretation of anthropometry. WHO Tech. Rep. Ser. 1995; 854.
  13. Woodrow G., Oldroyd В., Wright A. et al. Comparison of anthropometric equations for estimation of total body water in peritoneal dialysis patients. Nephrol. Dial. Transplantю 2003; 18: 384-389.
  14. Carvounis С. Р., Carvounis G., Hung M. Nutritional status of maintenance hemodialysis patients. Am. J. Clin. Nutr. 1986; 43: 946-954.
  15. Loan M. V., Belko A. Z., Mayclin P. L. et al. Use of total-body electrical conductivity for monitoring body composition changes during weight reduction. Am. J. Clin. Nutr. 1987; 46 (1): 5-8.
  16. Арутюнов Г. П. Кахексия у больных с хронической сердечной недостаточностью. Каков масштаб проблемы? Что мы знаем и что нам делать? Сердеч. недостат. 2001; 2: 101-104.
  17. Rosengren A., Hauptman P. J., Lappas G. et al. Big men and atrial fibrillation: effects of body size and weight gain on risk of atrial fibrillation in men. Eur. Heart J. 2009; 30: 1113-1120.
  18. Frost L., Hune L. J., Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am. J. Med. 2005; 118: 489-495.
  19. Hanna I. R., Heeke В., Bush H. et al. The relationship between stature and the prevalence of atrial fibrillation in patients with left ventricular dysfunction. J. Am. Coll. Cardiol. 2006; 47: 1683-1688.
  20. Stephens N. A., Skipworth R. J., Fearon K. C. Cachexia, survival and the acute phase response. Curr. Opin. Support Palliat. Care 2008; 2 (4): 267-274.
  21. Cianciaruso В., Caputo D. L., Annecchino R. et al. MIA-syndrome and nutritional status. G. Ital. Nefrol. 2004; 21; 33-35.
  22. Yao Q., Lindholm В., Stenvinkel P. Inflammation as a cause of malnutrition, atherosclerotic cardiovascular disease, and poor outcome in hemodialysis patients. Hemodial. Int. 2004; 8 (2): 118-129.
  23. Соломатина Л. В., Журавлева Ю. А., Гусев Е. Ю. Концепция MIA-синдрома и системного воспаления при терминальной почечной недостаточности. Нефрология 2009; 4: 64-69.
  24. Nakajima K., Yamaoka H., Morita K. et al. Elderly people with low body weight may have subtle low-grade inflammation Obesity. 2009; 17 (4): 803-808.
  25. Dullo A. G., Jacquet J., Girardier L. Autoregulation of body composition during weight recovery in humans: the Minnesota experiment revisited. Int. J. Obes. 1996; 20: 393-405.
  26. Missan S., Linsdell P., McDonald T. F. Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea-pig ventricular myocytes. Pflügers Arch. 2008; 456 (3): 489-500.
  27. Kocic I. Modulators of ion channels activated by hypotonic swelling in cardiomyocytes: new perspectives for pharmacological treatment of life-threatening arrhythmias. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2005; 3 (4): 333-339.
  28. Cheng J., Niwa R., Kamiya K. et al. Carvedilol blocks the repolarizing K+ currents and the L-type Ca2+ current in rabbit ventricular myocytes. Eur. J. Pharmacol. 1999; 376: 189-201.
  29. Tamashiro M. N., Constantino M. A. Ions at the Water-Vapor Interface. J. Phys. Chem. B. 2010; 2: 18.
  30. Jungwirth P., Winter B. Ions at aqueous interfaces: from water surface to hydrated proteins. Annu. Rev. Phys. Chem. 2008; 59: 343-366.

Copyright (c) 2011 Menzorov M.V., Shutov A.M., Serov V.A., Menzorov M.V., Shutov A.M., Serov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies