Influence of genetic factors on the development of target organ lesions in relation to age at diagnosis of arterial hypertension

Full Text

Abstract

Aim. To analyze the impact of polymorphism of a group of genes encoding for endothelial function on the development of target organ lesions in arterial hypertension (AH) in relation to age.
Subjects and methods. Six hundred and seventy-two AH patients (mean age 50.6 years; men 67%) were examined. Microalbuminuria (MAU) was estimated. Electrocardiography, echocardiography, and carotid ultrasonography were performed. A control group comprised 184 subjects. Single-nucleotide substitutions genotyping of the Glu298Asp endothelial NO synthase (eNOS), p22phox of NADPH oxidase subunit C242T, and angiotensin II type 1 receptor (ATR1) A1166C gene polymorphisms was conducted by a polymerase chain reaction (PCR) via restriction fragment length polymorphism analysis, and M235T substitution genotyping of the G-6A polymorphism of the angiotensinogen gene was performed by a real-time allele-specific PCR. The impact of the polymorphisms on the development of MAU, left ventricular hypertrophy (LVH), carotid lesion was analyzed in the groups: AH was diagnosed in subjects aged less than 35 years (n = 128) or older. The ultrasound signs of carotid lesion, LVH, and MAU were revealed in 65, 39, and 10.5% of the patients with AH, respectively.
Results. The subgroups showed differences in the distribution of polymorphisms of the study genes in relation to age at AH detection.
Conclusion. In patients with AH diagnosed at less than 35 years of age, pathological changes in the carotid are associated with a G allele of the Glu298Asp eNOS polymorphism (odds ratio (OR) = 2.3; p = 0.016) and with an T allele of the p22phox of NADPH oxidase subunit C242T polymorphism (OR 1.7; p = 0.049). In this age subgroup, LVH was associated with an A allele of the Glu298Asp eNOS polymorphism (OR = 1.9; p = 0.037), MAU was with an A allele of the Glu298Asp eNOS polymorphism (OR = 3.6; p = 0.02) and a C allele of the ATR1 A1166C gene polymorphism (OR = 2.6; p = 0.034).

References

  1. Бойцов С. А. Десять лет поиска генетической основы гипертонической болезни: трудности и перспективы. Артер. гипертенз. 2004; 8(3): 157-160.
  2. Мазуров В. И., Шавловский М. М. Генетика мультифакториальных заболеваний и прогностическое значение эндогенных факторов риска. Мед. акад. журн. 2006; 5(1): 73- 82.
  3. Barlassina C., Lanzani Ch., Manunta P., Bianchi C. Genetics of essential hypertension: fromfamilies to Genes. J. Am. Soc. Nephrol. 2002; 13(11, Suppl. 3): S155-S164.
  4. Province M. A., Kardia S. L., Ranade K. et al. National Heart, Lung and Blood Institute Family Blood Pressure Program. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am. J. Hypertens. 2003; 16(2): 144-147.
  5. Timberlake D. S., O'Connor Daniel T., Parmer R. J. Molecular genetics of essential hypertension: recent results and emerging strategies. Nephrol. and Hypertens. 2001; 10(l): 71-79.
  6. Sharma A. M., Jeunemaitre X. The future of genetic association studies in hypertension: improving the signal-to-noise ratio. J. Hypertens. 2000; 18(7): 811-814.
  7. Day I. N. M., Wilson D. I. Genetics and cardiovascular risk. Br. Med. J. 2001; 323(7326): 1409-1412.
  8. Luft F. C. Geneticism of essential hypertension. Hypertension 2004; 43(6): 1155-1159.
  9. Dominiczak A. F., Brain N., Charchar F. J. et al. Genetics of hypertension: lesson learnt from Mendelian and polygenic syndromes. Clin. Exp. Hypertens. 2004; 26: 611-620.
  10. Gibbons G. H., Liew C. C., Goodarzi M. O. et al. Genetic markers: progress and potential for cardiovascular disease. Circulation 2004; 109: 47-58.
  11. Бражник В. А., Затейщиков Д. А., Сидоренко Б. А. Наследственные факторы и гипертрофия левого желудочка. Кардиология 2003; 1: 78-86.
  12. Кобалава Ж. Д., Котовская Ю. В., Чистяков Д. А. и др. Клинико-генетические детерминанты гипертрофии левого желудочка у больных эссенциальной гипертензией. Кардиология 2001; 7: 39-44.
  13. Минушкина Л. О., Затейщиков Д. А., Сидоренко Б. А. Генетические аспекты регуляции эндотелиальной функции при артериальной гипертензии. Кардиология 2000; 3: 68- 76.
  14. Шляхто Е. В., Конради А. О. Роль генетических факторов в ремоделировании сердечно-сосудистой системы при гипертонической болезни. Артер. гипертенз. 2002; 8(3): 107-114.
  15. Castellano M., Rossi F., Ciacché M. et al. [Beta]2-adrenergic receptor gene polymorphism, age, and cardiovascular phenotypes. Hypertension 2003; 41(2): 361-367.
  16. Sobstyl J., Dzida C., Puzniak A. et al. Analysis of association of human endothelial nitric oxide synthase gene polymorphism with myocardial infraction. Pol. Merkur. Lek. 2002; 13(73): 10-13.
  17. Профилактика, диагностика и лечение артериальной гипертензии. Российские рекомендации (третий пересмотр). Кардиоваск. тер. и профилакт. 2008; 7: прил. 2: 5-16.
  18. Elosua R., Cupples A., Fox C. S. et al. Association between well-characterized lipoprotein-related genetic variants and carotid intimal medial thickness and stenosis: The Framingham Heart Study. Atherosclerosis 2006; 189(1): 222-228.
  19. Levy D., Larson M. G., Benjamin E. J. et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet. 2007; 8(Suppl. 1): S3.
  20. Manolio T. A., Boerwinkle E., O'Donnell C. J., Wilson A. F. Genetics of ultrasonographic carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004; 24(9): 1567-1577.
  21. O'Donnell C. J., Cupples L. A., D'Agostino R. B. et al. Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI's Framingham Heart Study. BMC Med. Genet. 2007; 8(Suppl. 1): S4.
  22. Arnett D. K., Borecki I. B., Ludwig E. H. et al. Angiotensinogen and angiotensin converting enzyme genotypes and carotid atherosclerosis: the atherosclerosis risk in communities and the NHLBI family heart studies. Atherosclerosis 1998; 138(1): 111-116.
  23. Chapman C. M., Palmer L. J., McQuillan B. M. et al. Polymorphisms in the angiotensinogen gene are associated with carotid intimal-medial thickening in females from a community-based population. Atherosclerosis 2001; 159(1): 209-217.
  24. Czarnecka D., Kawecka-Jaszcz K., Stolarz K. et al. Genetic factors in hypertension. Angiotensin-converting enzyme polymorphism. Kardiol. Pol. 2004; 61(7): 1-10.
  25. Mannami T., Katsuya T., Baba S. et al. Low potentiality of angiotensin-converting enzyme gene insertion/deletion polymorphism as a useful predictive marker for carotid atherogenesis in a large general population of a Japanese city: the Suita study. Stroke 2001; 32(6): 1250-1256.
  26. Pontremoli R., Ravera M., Viazzi F. et al. Polymorphism of the renin-angiotensin system and organ damage in essential hypertension. Kidney Int. 2000; 57(2): 561-569.
  27. Zhu S., Meng Q. H. Association of angiotensin II type I receptor gene polymorphism with carotid atherosclerosis. Clin. Chem. Lab. Med. 2006; 44(3): 282-284.
  28. Bhuiyan A. R., Chen W., Srinivasan S. R. et al. G-6a polymorphism of angiotensinogen gene modulates the effect of blood pressure on carotid intima-media thickness. The Bogalusa Heart Study. Am. J. Hypertens. 2007; 20(10): 1073-1078.
  29. Chen W., Srinivasan S. R., Bond M. G. et al. Nitric oxide synthase gene polymorphism (G894T) influences arterial stiffness in adults: The Bogalusa Heart Study. Am. J. Hypertens. 2004; 17(7): 553-559.
  30. Czarnecka D., Kawecka-Jaszcz K., Stolarz K. et al. Ambulatory blood pressure, left ventricular mass and vascular phenotypes in relation to the endothelial nitric oxide synthase gene Glu298Asp and intron 4 polymorphisms in a population-based family study. J. Hum. Hypertens. 2005; 19(5): 413-420.
  31. Lembo G., De Luca N., Battagli C. et al. A common variant of endothelial nitric oxide synthase (Glu298Asp) is an independent risk factor for carotid atherosclerosis. Stroke 2001; 32(3): 735-740.
  32. Leoncini G., Ratto E., Viazzi F. et al. Increased ambulatory arterial stiffness index is associated with target organ damage in primary hypertension. Hypertension 2006; 48 (3): 397-403.
  33. Paradossi U., Ciofini E., Clerico A. et al. Endothelial function and carotid intima-media thickness in young healthy subjects among endothelial nitric oxide synthase Glu298- > Asp and T-786- > C polymorphisms. Stroke 2004; 35(6): 1305-1309.
  34. Wolff B., Braun C., Schlüter C. et al. Endothelial nitric oxide synthase Glu(298)- > Asp polymorphism, carotid atherosclerosis and intima-media thickness in a general population sample. Clin. Sci. 2005; 109(5): 475-481.
  35. Karvonen J., Kauma H., Kervinen K. et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism and blood pressure, left ventricular mass and carotid artery atherosclerosis in a population-based cohort. J. Intern. Med. 2002; 251(2): 102-110.
  36. Hayaishi-Okano R., Yamasaki Y., Kajimoto Y. et al. Association of NAD(P)H oxidase p22phox gene variation with advanced carotid atherosclerosis in Japanese type 2 diabetes. Diabet. Care 2003; 26(2): 458-463.
  37. Yokoyama M., Inoue N., Kawashima S. Role of the vascular NADH/NADPH oxidase system in atherosclerosis. Ann. N. Y. Acad. Sci. 2000; 902: 241-247.
  38. Cahilly C., Ballantyne C. M., Lim D. S. et al. A variant of p22(phox), involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circ. Res. 2000; 86(4): 391-395.
  39. Lee W. H., Hwang T. H., Oh G. T. et al. Genetic factors associated with endothelial dysfunction affect the early onset of coronary artery disease in Korean males. Vasc. Med. (Lond.) 2001; 6(2): 103-108.
  40. Nasti S., Spallarossa P., Altieri P. et al. C242T polymorphism in CYBA gene (p22phox) and risk of coronary artery disease in a population of Caucasian Italians. Dis. Markers 2006; 22(3): l67-173.
  41. Niemiec P., Zak I., Wita K. The 242T variant of the CYBA gene polymorphism increases the risk of coronary artery disease associated with cigarette smoking and hypercholesterolemia. Coronary Artery Dis. 2007; 18(5): 339-346.
  42. Stanger O., Renner W., Khoschsorur G. et al. NADH/NADPH oxidase p22phox C242T polymorphism and lipid peroxidation in coronary artery disease. Clin. Physiol. (Oxford). 2001; 21(6): 718-722.
  43. Spence M. S., McGlinchey P. C., Patterson C. C. et al. Investigation of the C242T polymorphism of NAD(P)H oxidase p22phox gene and ischaemic heart disease using family-based association methods. Clin. Sci. 2003; 105(6): 677-682.
  44. Zafari A. M., Davidoff M. N., Austin H. et al. The A640G and C242T p22(phox) polymorphisms in patients with coronary artery disease. Antioxidants & Redox Signal. 2002; 4(4): 675-680.
  45. Mata-Balaguer T., de la Herrän R., Ruiz-Rejön C. et al. Angiotensin-converting enzyme and p22(phox) polymorphisms and the risk of coronary heart disease in a low-risk Spanish population. Int. J. Cardiol. 2004; 95(2-3): 145-151.
  46. Карпов Р. С., Пузырев К. В., Павлюкова Е. Н., Степанов В. А. Молекулярно-генетический анализ гипертрофии миокарда левого желудочка. Кардиология 2001; 6: 25-30.
  47. Kuznetsova T., Staessen J., Wang J. et al. D/I polymorphism of the ACE gene and left ventricular hypertrophy. J. Hypertens. 1999; Suppl. 3: 250.
  48. Kuznetsova T., Staessen J., Stolarz K. et al. Relationship between left ventricular mass and the ACE D/I polymorphism varies according to sodium intake. J. Hypertens. 2004; 22(2): 287-295.
  49. Mettimano M., Romano-Spica V., Ianni A. et al. AGT and AT1R gene polymorphism in hypertensive heart disease. Int. J. Clin. Pract. 2002; 56(8): 574-577.
  50. Бойцов С. А., Турдиалиева С. А., Карпенко М. А. и др. Особенности гемодинамики, метаболизма и структурный полиморфизм генов АПФ и рецепторов первого типа ангиотензина 2 у женщин детородного возраста при артериальной гипертензии первой степени. Кардиология 2003; 7: 65-69.
  51. Pontremoli R., Ravera M., Viazzi F. et al. Genetic polymorphism of the renin-angiotensin system and organ damage in essential hypertension. Kidney Int. 2000; 57(2): 561-569.
  52. Olcay A., Nisanci Y., Ekmekçi C. G. et al. Angiotensinogen M235T polymorphism and left ventricular indices in treated hypertensive patients with normal coronary arteries. Anadolu kardiyoloji dergisi: AKD. Anatolian J. Cardiol. 2007; 7(3): 257-261.
  53. Karjalainen J., Kujala U. M., Stolt A. et al. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J. Am. Coll. Cardiol. 1999; 34(2): 494-499.
  54. Wang A. Y., Chan J. C., Wang M. et al. Cardiac hypertrophy and remodeling in relation to ACE and angiotensinogen genes genotypes in Chinese dialysis patients. Kidney Int. 2003; 63(5): 1899-1907.
  55. Province M. A., Boerwinkle E., Chakravart A. et al. Lack of association of the angiotensinogen-6 polymorphism with blood pressure levels in the comprehensive NHLBI Family Blood Pressure Program. J. Hypertens. 2000; 18(7): 867-876.
  56. Kuznetsova T., Staessen J. A., Reineke T. et al. Context-dependency of the relation between left ventricular mass and AGT gene variants. J. Hum. Hypertens. 2005; 19(2): 155-163.
  57. Patel D. A., Li S., Chen W. et al. G-6A polymorphism of the angiotensinogen gene and its association with left ventricular mass in asymptomatic young adults from a biethnic community: the Bogalusa Heart Study. Am. J. Hypertens. 2005; 18(11): 1437-1441.
  58. Lapu-Bula R., Quarshie A., Lyn D. et al. The 894T allele of endothelial nitric oxide synthase gene is related to left ventricular mass in African Americans with high-normal blood pressure. J. Nat. Med. Assoc. 2005; 97(2): 197-205.
  59. Минушкина Л. О., Затейщиков Д. А., Затейщикова А. А. и др. Полиморфизм гена эндотелиальной NO-синтетазы и гипертрофия миокарда у больных артериальной гипертензией. Кардиология 2002; 3: 30-34.
  60. Zhu H., Wang X., Dong Y. et al. Influence of the eNOS gene on development of blood pressure and left ventricular mass: longitudinal findings in multiethnic youth. Pharmacogenet. and Genom. 2005; 15(9): 669-675.
  61. BuraczynskaґM., Ksiazek P., Lopatynski J. et al. Association of the renin-angiotensin system gene polymorphism with nephropathy in type II diabetes. Pol. Arch. Med. Wewnet. 2002; 108(2): 725-730.
  62. Fabris B., Bortoletto M., Candido R. et al. Genetic polymorphisms of the renin-angiotensin-aldosterone system and renal insufficiency in essential hypertension. J. Hypertens. 2005; 23(2): 309-316.
  63. Young R. P., Chan J. C., Critchley J. A. et al. Angiotensinogen T235 and ACE insertion/deletion polymorphisms associated with albuminuria in Chinese type 2 diabetic patients. Diabet. Care 1998; 21(3): 431-437.
  64. Marin P., Julve R., Chaves F. J. et al. Polymorphisms of the angiotensinogen gene and the outcome of microalbuminuria in essential hypertension: a 3-year follow-up study. J. Hum. Hypertens. 2004; 18(1): 25-31.
  65. Thomas G. N., Critchley J. A., Tomlinson B. et al. Albuminuria and the renin-angiotensin system gene polymorphisms in type-2-diabetic and in normoglycemic hypertensive Chinese. Clin. Nephrol. 2001; 55(1): 7-15.
  66. Wong T. Y., Chan J. C., Poon E., Li P. K. Lack of association of angiotensin-converting enzyme (DD/II) and angiotensinogen M235T gene polymorphism with renal function among Chinese patients with type II diabetes. Am. J. Kidney Dis. 1999; 33(6): 1064-1070.
  67. Eroglu Z., Cetinkalp S., Erdogan M. et al. Association of the angiotensinogen M235T and angiotensin-converting enzyme insertion/deletion gene polymorphisms in Turkish type 2 diabetic patients with and without nephropathy. J. Diabet. Complicat. 2008; 22(3): 186-190.
  68. Dudley C. R., Keavney B., Stratton I. M. et al. U. K. Prospective Diabetes Study. XV: Relationship of renin-angiotensin system gene polymorphisms with microalbuminuria in NIDDM. Kidney Int. 1995; 48(6): 1907-1911.
  69. Chaves F. J., Pascual J. M., Rovira E. et al. Angiotensin II AT1 receptor gene polymorphism and microalbuminuria in essential hypertension. Am. J. Hypertens. 2001; 14(4, Pt 1): 364-370.
  70. Dell'Omo G., Penno G., Pucci L. et al. Lack of association between endothelial nitric oxide synthase gene polymorphisms, microalbuminuria and endothelial dysfunction in hypertensive men. J. Hypertens. 2007; 25(7): 1389-1395.
  71. Matsunaga-Irie S., Maruyama T., Yamamoto Y. et al. Relation between development of nephropathy and the p22phox C242T and receptor for advanced glycation end product G1704T gene polymorphisms in type 2 diabetic patients. Diabet. Care 2004; 27: 303-307.
  72. Hodgkinson A. D., Millward B. A., Demaine A. G. Association of the p22phox component of NAD(P)H oxidase with susceptibility to diabetic nephropathy in patients with type I diabetes. Diabet. Care 2003; 26(11): 3111-3115.
  73. Perianayagam M. C., Liangos O., Kolyada A. Y. et al. NADPH oxidase p22phox and catalase gene variants are associated with biomarkers of oxidative stress and adverse outcomes in acute renal failure. J. Am. Soc. Nephrol. 2007; 18(1): 255-263.
  74. Castejon A. M., Bracero J., Hoffmann I. S. et al. NAD(P)H oxidase p22phox gene C242T polymorphism, nitric oxide production, salt sensitivity and cardiovascular risk factors in Hispanics. J. Hum. Hypertens. 2006; 20(10): 772-779.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies