The role of mediator mechanisms in inflammation immunopathogenesis in cardiovascular diseases and osteoporosis

Full Text

Abstract

General pathophysiological mechanisms of inflammation are reviewed on the models of atherosclerosis, calcinating aortic stenosis, cardiac failure and osteoporosis widely encountered at old age.

References

  1. Мазуров В. И., Столов С. В., Зарайский М. И. Иммунологические механизмы в патогенезе коронарного атеросклероза. Тер. арх. 2005; 77 (9): 24-28.
  2. Нагорнев В. А., Восканьянц А. Н. Атерогенез как иммуновоспалительный процесс. Вестн. РАМН 2004; 7: 3-11.
  3. Насонов Е. Л. Иммунологические аспекты атеросклероза. Тер. арх. 2002; 74 (5): 80-85.
  4. Landmesser U., Hornig В., Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation 2004; 109 (21, suppl. 1): 27-33.
  5. Нагорнев В. А. Кинетика клеток сосудистой стенки и атерогенез. Арх. пат. 1998; 60 (1): 39-45.
  6. Ross R., Agius L. The process of atherogenesis - cellular and molecular interaction: from experimental animal models to humans. Diabetologia 1992; 35 (suppl. 2): 34-40.
  7. Ивановский Ю. В. Иммунное воспаление и атерогенез. В кн.: Проблемы медицины и биологии сегодня и завтра. М.: Медицина; 1990. 47-49.
  8. Жданов В. С., Дробкова И. П., Чумаченко П. В. Воспалительная клеточная реакция и тучные клетки в интиме аорты и легочной артерии человека на ранних стадиях атеросклероза. Арх. пат. 2006; 68 (2): 19-23.
  9. Linton M. F., Fazio S. Macrophages, inflammation, and atherosclerosis. Int. J. Obes. Relat. Metab. Disord. 2003; 27 (suppl. 3): 35-40.
  10. Jovinge S., Ares M. P., Nilsson J. Human monocytes/macrophages release TNF-alpha in response to Ox-LDL. Arterioscler. Thromb. Vasc. Biol. 1996; 16 (12): 1573-1579.
  11. Rosklint Т., Ohlsson B. G., Wiklund O. et al. Oxysterols induce interleukin-1 beta, production in human macrophages. Eur. J. Clin. Invest. 2002; 32 (1): 35-42.
  12. Liu Y., Hulten L. M., Wiklund O. Macrophages isolated from human atherosclerotic plaques produce IL-8, and oxysterols may have a regulatory function for IL-8 production. Arterioscler. Thromb. Vasc. Biol. 1997; 17 (2): 317-323.
  13. Sho M., Sho E., Singh T. M. et al. Subnormal shear stress-induced intimal thickening requires medial smooth muscle cell proliferation and migration. Exp. Mol. Pathol. 2002; 72 (2): 150-160.
  14. Stein O., Shiloni E., Stein Y. Effect of TNF on triacylglycerol in cultured vascular smooth muscle cells. Biochim. Biophys. Acta. 1991; 1082 (1): 33-36.
  15. Wolfbauer G., Glick J. M., Minor L. K., Rothblat G. H. Development of the smooth muscle foam cell: uptake of macrophage lipid inclusions. Proc. Natl. Acad. Sci. USA 1986; 83: 7760-7764.
  16. Aviram M. Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Antioxid. Redox. Signal. 1999; 1 (4): 585-594.
  17. Guyton J. R., Klemp K. F. Development of the lipid-rich core in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 4-11.
  18. Нагорнев В. А. Атерогенез и иммунное воспаление. Бюл. экспер. биол. 1996; 122 (7): 4-8.
  19. Севергина Л. О. Морфогенез нестабильной атеросклеротической бляшки и ее роль в развитии острого коронарного синдрома. Арх. пат. 2005; 67 (3): 51-54.
  20. Galis Z. S. Vulnerable plaque: the devil is in the details. Circulation 2004; 110 (3): 244-246.
  21. Mann J. M., Davies M. J. Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 1996; 94 (5): 928-931.
  22. Шлычкова Т. П., Жданов В. С., Карпов Ю. А., Чумаченко П. В. Основные типы нестабильных атеросклеротических бляшек и их распространенность в коронарных артериях при остром инфаркте миокарда. Арх. пат. 2005; 2: 24-29.
  23. Абакумова Ю. В. Морфологические, функциональные, инфекционные и клинические аспекты атерогенеза. Международ. мед. журн. 2000; 6: 522-524.
  24. Moreno P. R., Bernardi V. H., Lopez-Cuellar J. et al. Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 1996; 94 (12): 3090-3097.
  25. Naruko Т., Ueda M., Haze K. et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002; 106 (23): 2894-2900.
  26. Falk E., Shah P. K., Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657-671.
  27. Molloy K. J., Thompson M. M., Jones J. L. et al. Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activity. Circulation 2004; 110 (3): 337-343.
  28. Ватутин Н. Т. Роль воспаления в атерогенезе. Журн. акад. мед. наук Украины 2000; 6 (3): 520-533.
  29. Libby P., Geng Y. J., Aikawa M. et al. Macrophages and atherosclerotic plaque stability. Curr. Opin. Lipidol. 1996; 7 (5): 330-335.
  30. Sun H., Koike Т., Ichikawa K. et al. C-reactive protein in atherosclerotic lesions: its origin and pathophysiological significance. Am. J. Pathol. 2005; 167 (4): 1139-1148.
  31. Wilson A. M., Ryan M. C., Boyle A. J. The novel role of C-reactive protein in cardiovascular disease: risk marker or pathogen. Int. J. Cardiol. 2006; 106 (3): 291-297.
  32. Kobayashi S., Inoue N., Ohashi Y. et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler. Thromb. Vasc. Biol. 2003; 23 (8): 1398-1404.
  33. Лякишев А. А. Кальциноз коронарных артерий, факторы риска ишемической болезни сердца, С-реактивный белок и атеросклеротические сердечно-сосудистые осложнения. Кардиология 2005; 45 (11): 34-40.
  34. Жданов B. C. Некоторые актуальные вопросы патологии анатомии коронарного атеросклероза. Арх. пат. 1981; 10: 40-45.
  35. Аронов Д. М. Современное состояние и перспективы профилактики и лечения атеросклероза. Тер. apx. 1999; 71 (8): 5-9.
  36. Li J. J., Zhu C. G., Yu B. et al. The role of inflammation in coronary artery calcification. Ageing Res. Rev. 2007; 6 (4): 263-270.
  37. Guzman R. J. Clinical, cellular, and molecular aspects of arterial calcification. J. Vasc. Surg. 2007; 45 (suppl. A): 57-63.
  38. Tintut Y., Patel J., Pahmani F., Demer L. L. Tumor necrosis factor- a promotes in vitro calcification of vascular cells via the camp pathway. Circulation 2000; 102: 2636-2642.
  39. Csiszar A., Smith K. E., Koller A. et al. Regulation of bone morphogenetic protein-2 expression in endothelial cells: role of nuclear factor-kappa B activation by tumor necrosis factor-alpha, H2O2, and high intravascular pressure. Circulation 2005; 111: 2364-2372.
  40. Tintut Y., Patel J., Parhami F., Demer L. L. Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 2000; 102: 2636-2642.
  41. Cheng S. L., Shao J. S., Charlton-Kachigian N. et al. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J. Biol. Chem. 2003; 278: 45969-45977.
  42. Warrier B., Mallipeddi R., Karla P. K., Lee C. H. The functional role of C-reactive protein in aortic wall calcification. Cardiology 2005; 104 (2): 57-64.
  43. Jeziorska M., McCollum C., Woolley D. E. Calcification in atherosclerotic plaque of human carotid arteries: associations with mast cells and macrophages. J. Pathol. 1998; 185: 10-17.
  44. Nadra I., Mason J. C., Philippidis P. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase c and map kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ. Res. 2005; 96: 1248-1256.
  45. Shao J. S., Cai J., Towler D. A. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler. Thromb. Vasc. Biol. 2006; 26 (7): 1423-1430.
  46. Rajamannan N. M., Subramaniam M., Springett M. et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 2002; 105: 2660-2665.
  47. Otto С. М., Kuusisto J., Reichenbach D. D. et al. Characterization of the early lesion of "degenerative" valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 1994; 90: 844-853.
  48. Abedin M., Tintut Y., Demer L. L. Vascular calcification: mechanisms and clinical ramifications. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 1161-1170.
  49. Егоров И. В. Сенильный аортальный стеноз. Лекция для врачей. Совр. ревматол. 2007; 1: 20-25.
  50. Wu H. D., Maurer M. S., Friedman R. A. et al. The lymphocytic infiltration in - calcific aortic stenosis predominantly consists of clonally expanded T cells. J. Immunol. 2007; 178 (8): 5329-5339.
  51. Kaden J. J., Dempfle C. E., Grobholz R. et al. Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc. Pathol. 2005; 14 (2): 80-87.
  52. O'Brien K. D. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler. Thromb. Vasc. Biol. 2006; 26 (8): 1721-1728.
  53. Olsson M., Thyberg J., Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 1999; 19: 1218-1222.
  54. Katz R., Wong N. D., Kronmal R. et al. Features of the metabolic syndrome and diabetes mellitus as predictors of aortic valve calcification in the multi-ethnic study of atherosclerosis. Circulation 2006; 113: 2113-2119.
  55. Зотова И. В., Затейщиков Д. А., Сидоренко Б. А. Предикторы внутрисердечного тромбоза у больных мерцательной аритмией: факторы гемостаза, маркеры воспалений и генетические факторы. Кардиология. 2007; 11: 46-54.
  56. Banks L. M., Macsweeney J. E., Stevenson J. C. Effect of degenerative spinal aortic calcification on bone density measurements in postmenopausal women: links between osteoporosis and cardiovascular disease? Eur. J. Clin. Invest. 1994; 24: 813-817.
  57. Schulz E., Arfai K., Liu X. et al. Aortic calcification and the risk of osteoporosis and fractures. J. Clin. Endocrinol. 2004; 89 (9): 4246-4253.
  58. Reddy J., Bilezikian J. P., Smith S. J., Mosca L. Reduced bone mineral density is associated with breast arterial calcification. J. Clin. Endocrinol. 2008; 93 (1): 208-211.
  59. Shanahan C. M., Cary N. R., Metcalfe J. C. et al. High expression of genes for calcification-regulating proteins in human atherosclerotic plaque. J. Clin. Invest. 1994; 93: 2393-2402.
  60. Edwards C. J., Hart D. J., Spector T. D. Oral statins and increased bone mineral density in postmenopausal women. Lancet 2000; 355: 2218-2219.
  61. McCormick R. K. Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern. Med. Rev. 2007; 12 (2): 113-145.
  62. Vega D., Maalouf N. M., Sakhaee K. Clinical review: the role of receptor activator of nuclear factor-kappa B (RANK)/RANK ligand/osteoprotegerin: clinical implications. J. Clin. Endocrinol. 2007; 92 (12): 4514-4521.
  63. Li J., Sarosi I., Yan X. Q. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 2000; 97: 1566-1571.
  64. Fuller K., Murphy C., Kirstein B. et al. TNFa potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 2002; 143: 1108-1118.
  65. Rusinska A., Chlebna-Sokol D. Evaluation of interleukin-1 and -6 in the etiopathogenesis of idiopathic osteoporosis and osteopenia in children. Arch. Immunol. Ther. Exp. (Warsz.) 2005; 53 (3): 257-265.
  66. Lee N., Fowler E., Mason S. et al. Tumor necrosis factor-alpha haplotype is strongly associated with bone mineral density in patients with Crohn's disease. J. Gastroenterol. Hepatol. 2007; 22 (6): 913-919.
  67. Ochi S., Shinohara M., Sato K. et al. Pathological role of osteoclast costimulation in arthritis-induced bone loss. Proc. Natl. Acad. Sci. USA 2000; 104 (27): 11394-11399.
  68. Baldini V., Mastropasqua M., Francucci C. M., D'Erasmo E. Cardiovascular disease and osteoporosis. J. Endocrinol. Invest. 2005; 28 (10): 69-72.
  69. Mari D., Di Berardino F., Cugno M. Chronic heart failure and the immune system. Clin. Rev. Allergy Immunol. 2002; 23 (3): 325-340.
  70. Yndestad A., Damas J. K., Oie E. et al. Systemic inflammation in heart failure - the whys and wherefores. Heart Fail. Rev. 2006; 11 (1): 83-92.
  71. Irvin M., Mak S., Mann D. et al. Tissue expression and immunolocalization of tumour necrosis factor-alpha in post infarction-dysfunctional myocardium. Circulation 1999; 99: 1492-1498.
  72. Mann D. L. Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu. Rev. Physiol. 2003; 35: 81-101.
  73. Bozkurt B., Kribbs S. B., Clubb F. J. et al. Pathophysiologicalli relevant concentrations of tumor necrosis factor-alpha provokes progressive left ventricular dysfunction and remodeling in rats. Circulation 1998; 97: 1382-1391.
  74. Oyama J., Shimokawa H., Momii H. et al. Role of nitric oxide and peroxynitrite in the cytokine-induced sustained myocardial dysfunction in dogs in vivo. J. Clin. Invest. 1998; 101 (10): 2207-2214.
  75. Gurantz D., Cowling R. T., Varki N. et al. IL-1beta and TNF-alpha upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J. Mol. Cell. Cardiol. 2005; 38 (3): 505-515.
  76. Peng J., Gurantz D., Tran V. et al. Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ. Res. 2002; 91 (12): 1119-1126.
  77. Candia A. M., Villacorta H. Jr., Mesquita E. T. Immune-inflammatory activation in heart failure. Arq. Bras. Cardiol. 2007; 89 (3): 183-208.
  78. Silverberg D. S., Wexler D., Iaina A., Schwartz D. The interaction between heart failure and other heart diseases, renal failure, and anemia. Semin. Nephrol. 2006; 26 (4): 296-306.
  79. Ольбинская Л. И., Игнатенко С. Б. Роль цитокиновой агрессии в патогенезе синдрома сердечной кахексии у больных с хронической сердечной недостаточностью. Сердеч. недостат. 2001; 2 (3): 132-137.
  80. Johnson Т. Е. Recent results: biomarkers of aging. Exp. Gerontol. 2006; 41 (12): 1243-1246.
  81. Vasto S., Mocchegiani E., Candore G. et al. Inflammation, genes and zinc in ageing and age-related diseases. Biogerontology 2006; 7 (5-6): 315-327.

Copyright (c) 2009 Tsurko V.V., Leonenko I.V., Egorov I.V., Krasnosel'skiy M.Y., Tsurko V.V., Leonenko I.V., Egorov I.V., Krasnoselsky M.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies