The study of parameters of mesenchymal stromal cells differentiation in donors and patients with aplastic anemia


Aim. To examine ability of mesenchymal stromal cells (MSC) of the bone marrow (BM) for differentiation in adipogenic and osteogenic differentiation in donors and patients with aplastic anemia (AA).
Material and methods. We obtained MSC cultures from BM cells of donors and AA patients and induced differentiation of mesenchymal cells with use of relevant reagents. Morphological changes in MSC were studied with light microscopy. A relative level of expression of differentiation marker genes in MSC cultures before and after induction of differentiation was analysed with reverse transcription-polymerase chain reaction.
Results. By morphological characteristics, MSC cultures in AA patients before and after differentiation induction do not differ from donor cultures, but relative expression of the genes of differentiation markers demonstrated that expression was different in male and female donors; MSC before and after induction of differentiation differ in donors and AA patients.
Conclusion. Further studies are needed for detection of functional changes in precursors of stromal microenvironment and understanding of the disease pathogenesis.


  1. Caplan A. I. The mesengenic process. Clin. Plast. Surg. 1994; 21 (3): 429-435.
  2. Horwitz E. M., Le Blanc K., Dominici M. et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 2005; 7 (5): 393-395.
  3. Jorgensen C., Gordeladze J., Noel D. Tissue engineering through autologous mesenchymal stem cells. Curr. Opin. Biotechnol. 2004; 15 (5): 406-410.
  4. Barry F. P., Murphy J. M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 2004; 36 (4): 568-584.
  5. Caplan A. I. Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect. Tissue Res. 1995; 31 (4): S9-S14.
  6. Horwitz E. M., Prockop D. J., Fitzpatrick L. A. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 1999; 5 (3): 309-313.
  7. Deans R. J., Moseley A. B. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 2000; 28 (8): 875-884.
  8. Vercelli A., Mereuta O. M., Garbossa D. et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 2008; 31 (3): 395-405.
  9. Flores-Figueroa E., Montesinos J. J., Flores-Guzman P. et al. Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leukemia Res. 2008; 32 (9): 1407-1416.
  10. Zhang Y. Z., Zhao D. D., Han X. P. et al. In vitro study of biological characteristics of mesenchymal stem cells in patients with low-risk myelodysplastic syndrome. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2008; 16 (4): 813-818.
  11. Hirano N., Butler M. O., Guinan E. C. et al. Presence of anti-kinectin and anti-PMS1 antibodies in Japanese aplastic anaemia patients. Br. J. Haematol. 2005; 128 (2): 221-223.
  12. Takamatsu H., Feng X., Chuhjo T. et al. Specific antibodies to moesin, a membrane-cytoskeleton linker protein, are frequently detected in patients with acquired aplastic anemia. Blood 2007; 109 (6): 2514-2520.
  13. Hirano N., Butler M. O., Bergwelt-Baildon M. S. et al. Autoantibodies frequently detected in patients with aplastic anemia. Blood 2003; 102 (13): 4567-4575.
  14. Wang Y., Hu X., Guo C. et al. Polarization of natural killer T cells towards an NKT2 subpopulation occurs after stimulation with alpha-galactosylceramide and rhG-CSF in aplastic anemia. Acta Haematol. 2008; 119 (3): 178-186.
  15. Solomou E. E., Rezvani K., Mielke S. et al. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood 2007; 110 (5): 1603-1606.
  16. Gu Y., Hu X., Liu C. et al. Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br. J. Haematol. 2008; 142 (1): 109-114.
  17. Hotta T., Kato T., Maeda H. et al. Functional changes in marrow stromal cells in aplastic anaemia. Acta Haematol. 1985; 74 (2): 65-69.
  18. Juneja H. S., Gardner F. H. Functionally abnormal marrow stromal cells in aplastic anemia. Exp. Hematol. 1985; 13 (3): 194-199.
  19. Marsh J. C., Chang J., Testa N. G. et al. In vitro assessment of marrow 'stem cell' and stromal cell function in aplastic anaemia. Br. J. Haematol. 1991; 78 (2): 258-267.
  20. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 1987; 162 (1): 156-159.
  21. Nissen C., Wodnar-Filipowicz A., Slanicka-Krieger M. S. et al. Persistent growth impairment of bone marrow stroma after antilymphocyte globulin treatment for severe aplastic anaemia and its association with relapse. Eur. J. Haematol. 1995; 55 (4): 255-261.
  22. Scopes J., Ismail M., Marks K. J. et al. Correction of stromal cell defect after bone marrow transplantation in aplastic anaemia. Br. J. Haematol. 2001; 115 (3): 642-652.
  23. Vidal-Puig A., Bjorbaek C. Molecular genetics of non insulin dependent diabetes mellitus. Med. Clin. (Barc.) 1997; 109 (3): 107-114.
  24. Чертков И. Л., Гуревич О. А. Стволовая кроветворная клетка и ее микроокружение. М.: Медицина; 1984.

Copyright (c) 2009 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail:


© 2018-2021 "Consilium Medicum" Publishing house

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies