Polymorphism -930A > G of the cytochrome b gene is a novel genetic marker of predisposition to bronchial asthma

Abstract

Aim. To evaluate the link between promotional polymorphism -930A > G of the cytochrome b gene (CYBA) and onset of bronchial asthma; to examine effects of this locus on the risk of the disease development depending on the pro- and antioxidant action of environmental factors.
Material and methods. We studied samples of DNA obtained from 214 healthy individuals and 215 patients with bronchial asthma treated in Regional Kursk Hospital. We used polymerase chain reaction and analysed polymorphism of restriction fragments lengths for genotyping of -930A > G polymorphism of CYBA gene.
Results. Incidence of a variant allele -930G of CYBA gene among men with nonallergic bronchial asthma (nBA) was higher than in healthy men (OR 1.95; CI 1.02-3.73; p = 0.04). The homozygous variant genotype -930G/G was associated with a high risk of nBA in males (OR 2.66; CI 1.14-6.20; p = 0.02). In healthy individuals polymorphisms -930A > G and 640A > G were in negative linkage equilibrium (D = -0.057; p < 0.001) while in patients such associations were not registered. Male smokers with genotype -930G/G had the highest risk of nBA (OR 2.86; CI 1.06-7.77; p = 0.04) while non-smokers with this genotype had no risk of the disease (OR 1.50; CI 0.11-19.64; p = 0.70). Males with -930G/G on low or no vegetable diet had the highest risk of nBA (OR 3.11; CI 1.01-9.63; p = 0.04) while regular vegetable eaters had no risk to develop nBA (OR 0.73; CI 0.30-1.82; p = 0.50).
Conclusion. We were the first to find relations between -930A > G polymorphism of CYBA gene and predisposition to nBA. This association exists in males and depends on the smoking status and vegetable diet.

References

  1. ОбычныйFujisawa T. Role of oxygen radicals on bronchial asthma. Curr. Drug Targets Inflamm. Allergy 2005; 4: 505-509.
  2. Rahman I., Biswas S. K., Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur. J. Pharmacol. 2006; 533: 222-239.
  3. Болевич С. Б. Бронхиальная астма и свободнорадикальные процессы (патогенетические, клинические и терапевтические аспекты). М.: Медицина; 2006.
  4. Lee Y. L., Lin Y. C., Lee Y. C. et al. Clutathione S-transferase P1 gene polymorphism and air pollution as interactive risk factors for childhood asthma. Clin. Exp. Allergy 2004; 34: 1707-1713.
  5. Mak J. C., Leung H. C., Ho S. P. et al. Polymorphisms in manganese superoxide dismutase and catalase genes: functional study in Hong Kong Chinese asthma patients. Clin. Exp. Allergy 2006; 36: 440-447.
  6. Polonikov A. V., Ivanov V. P., Solodilova M. A. et al. The relationship between polymorphisms in the glutamate cysteine ligase gene and asthma susceptibility. Respir. Med. 2007; 101: 2422-2424.
  7. Солодилова М. А., Иванов В. П., Полоников А. В. и др. Гетерозиготное носительство мутантного аллеля 198Leu гена глутатионпероксидазы-1 как фактор риска развития бронхиальной астмы при курении. Тер. арх. 2007; 79(3): 33-36.
  8. Drцge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002; 82: 47-95.
  9. Stocker R., Keaney J. F. Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2004; 84: 1381-1478.
  10. Keaney J. F. Jr. Oxidative stress and the vascular wall: NADPH oxidases take center stage. Circulation 2005; 112: 2585-2588.
  11. Babior B. M. NADPH oxidase: an update. Blood 1999; 93: 1464-1476.
  12. Dinauer M. C., Pierce E. A., Bruns G. A. P. et al. Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J. Clin. Invest. 1990; 86: 1729-1737.
  13. Moreno M. U., San Jose G., Orbe J. et al. Preliminary characterisation of the promoter of the human p22phox gene: identification of a new polymorphism associated with hypertension. FEBS Lett. 2003; 542: 27-31.
  14. San Josй G., Moreno M. U., Olivбn S. et al. Functional effect of the p22phox 930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension 2004; 44: 163-169.
  15. Иванов В. П., Солодилова М. А., Полоников А. В. и др. Анализ ассоциации полиморфизмов 242C > T и 640A > G гена p22-phox субъединицы НАДФН оксидазы с предрасположенностью к бронхиальной астме: пилотное исследование. Генетика 2008; 44(5): 693-701.
  16. Бронхиальная астма. Глобальная стратегия: Совместный доклад Национального Института Сердце, Легкие, Кровь и Всемирной организации здравоохранения. Пульмонология 1996; прил.: 1-166.
  17. Pearce N. What does the odds ratio estimate in a case-control study? Int. J. Epidemiol. 1993; 22: 1189-1192.
  18. Hill W. G. Estimation of linkage disequilibrium in randomly mating populations. Heredity 1974; 33: 229-239.
  19. Liu P. Y., Zhang Y. Y., Lu Y. et al. A survey of haplotype variants at several disease candidate genes: the importance of rare variants for complex diseases. J. Med. Genet. 2005; 42: 221-227.
  20. Monteleone C. A., Sherman A. R. Nutrition and asthma. Arch. Intern. Med. 1997; 157: 23-34.
  21. Sackesen C., Ercan H., Dizdar E. et al. A comprehensive evaluation of the enzymatic and nonenzymatic antioxidant systems in childhood asthma. J. Allergy Clin. Immunol. 2008; 122(1): 78-85.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies