Phenotypes of patients with chronic obstructive pulmonary disease

Abstract

Aim. To study characteristics of phenotypes of chronic obstructive pulmonary disease (COPD) basing on the findings of modern clinical, functional and roentgenomorphological tests in the course of the disease.
Material and methods. Basing on the results of high performance computed tomography, 64 COPD patients aged 46-75 years (FEV1 51 ± 24%) were divided into two groups: 53 patients with emphysematous phenotype (group 1) and 11 patients with bronchytic phenotype (group 2). The groups were compared by constitutional, clinical, functional and roentgenological parameters.
Results. Group 1 patients had significantly less body mass index, more severe edema by Borg's scale, low FEV1, FEV1/FLC, diffuse lung capacity and lung tissue density compared to group 2. Bronchoectases occurred more frequently in group 1 (33 and 9%, respectively).
Conclusion. Heterogenous COPD phenotypes differ not only at the stage of chronic respiratory insufficiency but also at all stages of the disease.

References

  1. Глобальная стратегия диагностики, лечения и профилактики хронической обструктивной болезни легких. Пересмотр 2006 г.: Пер. с англ. М.: Атмосфера, 2007.
  2. Boschetto P., Miniati M., Miotto D. Predominant emphysema phenotype in chronic obstructive pulmonary disease patients. Eur. Respir. J. 2003; 21: 450-454.
  3. Hersh C. P., Washko G. R., Jacobson F. L. et al. Interobserver variability in the determination of upper lobe-predominant emphysema. Chest. 2007; 131(2): 424-431.
  4. Нечаев В. И. Эмфизема легких: системные проявления болезни. Пульмонология 1999; 1: 54-58.
  5. Spiegelman D., Israel R. G., Bouchard C., Willett W. C. Absolute fat mass, percent body fat, and body-fat distribution: which is the real determinant of blood pressure and serum glucose? Am. J. Clin. Nutr. 1992; 55: 1033-1044.
  6. Suganami E., Takagi H., Ohashi H. et al. Leptin stimulates ischemia-induced retinal neovascularization: possible role of vascular endothelial growth factor expressed in retinal endothelial cells. Diabetes 2004; 53: 2443-2448.
  7. Bruno A., Chanez P., Chiappara G. et al. Does leptin play a cytokine-like role within the airways of COPD patients? Eur. Respir. J. 2005; 26(3): 398-405.
  8. Cao Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 2007; 117: 2362-2368.
  9. Voros G. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 2005; 146: 4545-4554.
  10. Gosselink R., Troosters T., Decramer M. Distribution of muscle weakness in patients with stable chronic obstructive pulmonary disease. J. Cardiopulm. Rehabil. 2000; 20: 353-360.
  11. Celli B. R., Cote C. C., Marin J. M. et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350: 1005-1012.
  12. Mattson J., Martin J. Emphysema-induced reductions in locomotory skeletal muscle contractile function. Exp. Physiol. 2007; 90(4): 519-525.
  13. Bellamy D., Hutchison D. C. The effects of salbutamol aerosol on lung function in patients with pulmonary emphysema. Br. J. Dis. Chest 1981: 75(2): 190-196.
  14. Малова М. Н. Эмфизема легких. М.: Медицина; 1975.
  15. Соколов Е. И., Маев И. В., Бусарова Г. А. Эмфизема легких. М., 2000.
  16. Gelb A. E., Hogg J. C., Miller N. L. et al. Contribution of emphysema and small airways in COPD. Chest 1996; 109: 353-359.
  17. Baldi S., Miniati M., Bellina C. R. et al. Relationship between extent of pulmonary emphysema by high-resolution computed tomography and lung elastic recoil in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001; 164: 585-589.
  18. Hogg J. C., Chu F., Utokaparch S. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350: 2645-2653.
  19. Parr D. G., Stoel B. C., Stolk J., Stockley R. A. Pattern of emphysema distribution in alphal-antitrypsin deficiency influences lung function impairment. Am. J. Respir. Crit. Care Med. 2004; 170(11): 1172-1178.
  20. Miniati M., Monti S., Stolk J. et al. Value of chest radiography in phenotyping chronic obstructive pulmonary disease. Eur. Respir. J. 2008; 31: 509-515.
  21. Gevenois P. A., Vuyst P., de Maertelaer V. et al. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am. J. Respir. Crit. Care Med. 1996; 154: 187-192.
  22. Uppaluri R., Mitsa T., Sonka M. et al. Quantification of pulmonary emphysema from lung computed tomography images. Am. J. Respir. Crit. Care Med. 1997; 156: 248-254.
  23. Зарембо И. А. Хроническая обструктивная патология легких. В кн.: Кокосова А. А. (ред.) Пневмология в пожилом и старческом возрасте. СПб.: МедМассМедиа: 2005. 486.
  24. Loubeyre P., Pater M., Revel D. Thin-section CT detection of emphysema associated with bronchiectasis and correlation with pulmonary function tests. Chest 1996; 109: 360-365.
  25. Donaldson G. C., Seemungal T. A. R., Bhowmik A. et al. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002; 57: 847-852.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies