Leukemic dendritic cells


Cite item

Full Text

Full Text

Лейкемические дендритные клетки. -
×

References

  1. Burnet F. М. Immunological surveillance in neoplasia. Transplant. Rev. 1971; 7: 3-25.
  2. Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice, morphology, quantitation, tissue distribution. J. Exp. Med; 1973; 137 (5): 1142-1162.
  3. Thomas R., Lipsky P. Human peripheral blood dendritic cell subsets: isolation and characterization of precursor and mature antigen presenting cells. J. Immunol. 1994; 153: 4016-4028.
  4. Grabbe S., Kampgen E., Schuler G. Dendritic cells: multi-lineal and multi-functional. Immunol. Today 2000; 21 (9): 431-433.
  5. Grouard G., Rissoan M. C., Filgueira L. et al. Dendritic cells: multi-lineal and multi-functuinal. Nature 2003; 425: 1101-1111.
  6. Rissoan M. C., Soumelis V., Kadowaki N. Reciprocal control of T helper cell and dendritic cell differentiation. Science, 1999; 283: 1183-1190.
  7. Banchereau J., Steinman R. M. Dendritic cells and the control of immunity. Nature 1998; 392: 245-251.
  8. Grabbe S., Murphy К. M., Reiner S. L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2002; 2: 933-943.
  9. Rotheft Т., Goschorek A., Barts H. et al. Antigen dose, type of antigen-presenting cell and time of differentiation contribute to the T helper 1/T helper 2 polarization of naive T cell. Immunology 2003; 110: 430-439.
  10. Садовникова E. Ю., Стрельникова Т. Б., Паровичникова Е. И., Савченко В. Г. Индукция костимуляторных молекул на поверхности бластных клеток у больных острыми миелобластными лейкозами. Тер. арх. 2001; 7: 34-40.
  11. Robinson S. P., English N., Jaju R. et al. The in vitro generation of dendritic cells from blast cells in acute leukemia. Br. J. Haematol. 1998; 103: 763-771.
  12. Waclavicek M., Berer A., Oehler L. et al. Calcium ionophore: a single reagent for the differentiation of primary human acute myelogenous leukemia cells towards dendritic cells. Br. J. Haematol. 2001; 114: 466-473.
  13. Cignetti A., Bryant E., Allione B. et al. CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 1999; 29: 2048-2055.
  14. Charbonnier A., Gaugler В., Saity D. et al. Human acute myeloblasts leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leumias. Eur. J. Immunol. 1999; 29: 2567-2578.
  15. Савченко В. Г., Садовникова Е. Ю., Паравичникова Е. Н. и др. Индукция противоопухолевой активности Т-лимфоцитов антиген-презентирующими клетками, полученными из бластных клеток у больных острыми лейкозами. Тер. арх. 2000; 7: 14-21.
  16. Choudhury A., Liang J. С., Thomas Е. К. et al. Dendritic derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 1999; 93: 780-786.
  17. Peter R., Anita S., Thomas F. CD34+acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Cancer Immunol. Immunother. 2005; 54: 685-693.
  18. Ikeda H., Lethe В., Lehmann F. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6: 199-208.
  19. Kessler J. H., Beekman N. J., Bres-Vloemans S. A. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med. 2001; 193: 73-88.
  20. Pilarski L. M., Masellis-Smith A., Belch A. R. RHAMM, a receptor for hyaluronan-mediated motility, on normal human lymphocytes, thymocytes, and malignant В cells: a mediator in В cell malignancy? Leukemia and Lymphoma 1994; 14: 363- 374.
  21. Sherman L., Sleeman J., Herrlich P. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr. Opin. Cell Biol. 1994; 6: 726-733.
  22. Dengler R., Munstermann U., al-Batran S. Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J. Haematol. 1995; 89: 250-257.
  23. Molldrem J., Kant S., Lu S. Peptide vaccination with PR1 elicits active T cell immunity that induces cytogenetic remission in acute myelogenous leukemia. Blood 2002; 98: abstr. 8: 92.
  24. Li L., Schmitt A., Reinhardt P. Reconstitution of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immunity 2003; 3: 8-15.
  25. Kufner S., Zitzelsberger H. Leukemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with acute myeloid leukemia: A methodological approach under serum-free culture conditions. Scand. J. Immunol. 2005; 62: 86-98.
  26. Michael A. C., Andrea V., David A. S. Immunotherapeutic approaches for hematologic malignancies. Hematology 2004; 1: 37-353.
  27. Danilov S. M., Sadovnicova E., Scharenborg N. et al. Angiotensin-converting enzyme (CD 143) is abundantly expressed by denritic cells and discriminates human monocyte-derived denritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hematol. 2003; 31: 1301-1309.
  28. Aliberti J., Viola J., Viera-de Abreu A. et al. Cutting edge: bradykinin induces IL-12 production by dendritic cells: a danger signal that drives Th1 polarization. J. Immunol 2003; 170: 5349-5353.
  29. Садовникова E. Ю., Свинарева Д. А., Паровичникова E. H. и др. Адгезивные свойства и экспрессия интегринов клетками больных острыми миелоидными лейкозами (ОМЛ), стимулированными в культуре ионофором для ионов кальция. Цитология 2004; 46 (4): 337-345.
  30. Kozlowski S., Corr М., Takeshita Т. et al. Serum angiotesin-converting enzyme activity process a human immunodeficiency virus 1 gp 160 peptide for presentation by major histocompatibility complex class I molecules. J. Exp. Med. 1992; 175: 1417-1422.
  31. Sherman L. A., Burke T. A., Biggs J. A. Extracellular processing of antigens that bind class I histocompatibility molecules. J. Exp. Med. 1992; 175: 1221-1226.
  32. Timmerman J. M., Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med. 1999; 50: 507-529.
  33. Wickner S., Maurizi M. R., Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999; 286 (5446): 1888-1893.
  34. Castellino F., Boucher P. E., Eichelberg K. et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class antigen presentation via two distinct processing pathway. J. Exp. Med. 2000; 191: 1957.
  35. Singh-Jasuja H., Toes R. E. M., Spee P. et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptormediated endocytosis. J. Exp. Med. 2000; 191: 1965-1976.
  36. Wang Y., Kelly C. G., Singh M. et al. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J. Immunol. 2002; 169: 2422-2435.
  37. Vabulas R. М., Ahmad-Nejad P., Ghose S. et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 2002; 277: 1510-1517.
  38. Schmitt E., Parcellier A., Gurbuxani S. et al. Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res. 2003; 63: 8233-8240.
  39. Li C. Y., Lee J. S., Ко Y. G. et al. Heat shock protein 70 inhibits apoptosis downstream of cytochrome с release and upstream of caspase-3 activation. J. Biol. Chem. 2000; 275: 25665-25671.
  40. Buzzard К A., Giaccia A. J., Killender M., Anderson R. L. Heat shock protein 72 modulates pathways of stress-induced apoptosis. J. Biol. Chem. 1998; 273: 17147-17153.
  41. Komarova E. Y., Afanasyeva E. A., Bulatova M. M. et al. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell&Stress Chaperones 2004; 9: 265-275.
  42. Steel R., Doherty J. P., Buzzard K. et al. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J. Biol. Chem. 2004; 279: 51490-51499.
  43. Ferrarini M., Heltai S., Zocchi M. R., Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cells. Int. J. Cancer. 1992; 51: 613-619.
  44. Hantschel M., Pfister K., Jordan A. et al. Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones 2000; 5: 438-442.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2008 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies