Moleculargenetic and cellular aspects of heart and vessel remodeling in essential hypertension (review)


Cite item

Full Text

Abstract

essentia!hypertension, heart, vessels, remodeling, genetics

References

  1. Maisch В. Ventricular remodeling. Cardiology 1996; 87 (suppl. 1): 2-10.
  2. Shmeider R. E., Messerly F. H. Hypertension and the heart. J. Hum. Hypertens. 2000; 14: 597-604.
  3. Haegerty A. M. Significance of structural changes in small arteries in hypertension. Blood Pressure 1997; suppl. 2: 31-33.
  4. Norrelund H., Christensen K., Samani N. et al. Early narrowed afferent arteriole is a contributor to the development of hypertension. Hypertension 1994; 24: 301-308.
  5. Korsgaard N., Mulvani M. Cellular hypertrophy in mesenteric resistance vessels from renal hypertensive rats. Hypertension 1988; 12: 162-167.
  6. Rizzoni D., Muiesan M. L., Porteri E. et al. Relations between cardiac and vascular structure in patients with primary and secondary hypertensin. J. Am. Coll. Cardiol. 1998; 32 (4): 985-992.
  7. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373-376.
  8. Иванова О. В., Балахонова Т. В., Соболева Г. Н. и др. Состояние эндотелийзависимой вазодилатации плечевой артерии у больных гипертонической болезнью, оцениваемое с помощью ультразвука высокого разрешения. Кардиология 1997; 39 (7): 41-46.
  9. Taddei S., Virdis A., Mattel P., Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 1993; 21: 929-933.
  10. Panza J. A., Quyyumi A. A., Brush J. E., Epstein S. E. Abnormal endothelial-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med. 1990; 323: 22-27.
  11. Forte P., Copland M., Smith L. M. et al. Basal nitric oxide synthesis in essential hypertension. Lancet 1997; 349: 837-842.
  12. John S., Schmeider R. E. Impaired endothelial function in arterial hypertension and hypercholesterolemia: potential mechanisms and differences. J. Hypertens. 2000; 18: 363-374.
  13. Higashi Y., Sasaki S., Nakagawa K. et al. Effect of obesity on endothelium-dependent, nitric oxide mediated vasodilation in normotensive individuals and patients with essential hypertension. Am. J. Hypertens. 2001; 14 (10): 1038-1045.
  14. Anderson T. J. Assessment and treatment of endothelial dysfunction in humans. J. Am. Coll. Cardiol. 1999; 34: 631-638.
  15. Simko F., Braunova Z., Kucharska J. et al. Passive smoking induced hypertrophy of the left ventricle: effect of captopril. Pharmazie 1999; 54 (4): 314.
  16. Cines D. В., Pollak E. S., Buck С. A. et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91 (10): 3527-3561.
  17. Becker B. F., Heindl В., Kupatt C., Zahler S. Endothelial function and hemostasis. J. Kardiol. 2000; 89 (3): 160-167.
  18. Ajmani R. S. Hypertension and hemorheology. Clin. Hemorheol. Microcirc. 1997; 17 (6): 397-420.
  19. Lip G. Y. H. Target organ damage and the prothrombotic state in hypertension. Hypertension 2000; 36 (6): 975-977.
  20. Dzau V., Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am. Heart J. 1991; 121: 1244- 1263.
  21. Devereux R. В., Roman M. J. Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences. Hypertens. Res. 1999; 22: 1-9.
  22. Carrol D., Hewitt J. K., Last K. A. et al. A twin study of cardiac reactivity and its relationship to parental blood pressure. Physiol. Behav. 1985; 34: 103-106.
  23. Fagard R., Van Den Broeke C., Bielen E., Amery A. Maximum oxygen uptake and cardiac size and function in twins. Am. J. Cardiol. 1987; 60: 1661-1665.
  24. Bielen E., Fagard R., Amery A. Inheritance of heart structure and physical exercise capacity: a study of left ventricular structure and exercise capacity in 7-year-old twins. Eur. Heart J. 1990; 11: 7-16.
  25. Bodurtha J. N., Mosteller M., Hewitt J. K. et al. Genetic analysis of anthropometric measures in 11-year old twins: the Medical College of Virginia Twin Study. Pediatr. Res. 1990; 28: 1 - 4.
  26. Olutade B. O., Gbadelo T. D., Porter V. D. Racial differences in ambulatory blood pressure and echocardiographic left ventricular geometry. Am. J. Med. Sci. 1998; 315: 101-109.
  27. Arnett D., Hong Y., Bella Y. et al. Subling correlation of left ventricular mass and geometry on hypertensive African Americans and whites: the HyperGEN Study. Am. J. Hypertens. 2001; 14 (12): 1226-1230.
  28. Chaturvedi N., Athanassopoulos G. et al. Echocardiographic measures of left ventricular structure and their relation with rest ambulatory blood pressure in blacks and whites in the United Kingdom. J. Am. Coll. Cardiol. 1994; 24: 1499-1505.
  29. Schunkert H., Bryckel U., Hengstenberg С. et al. Familial predisposition of left ventricular hypertrophy. J. Am. Coll. Cardiol. 1999; 33: 1685-1691.
  30. Unger T. The angiotensin type 2 receptor: variations on an enigmatic theme. J. Hypertens. 1999; 17 (12): 1775-1786.
  31. Karjalainen J., Kujala V. M., Stolf A. et al. Genetic predisposition of renin angiotensin system and left ventricular hypertrophy in endurance athletes. Abst. from ACC. New Orleans; 1999. 1165-1174.
  32. Lshanov A., Okamoto H., Yoneya K. et al. Angiotensinogen gene polymorphism in Japanese patients with hypertrophic cardiomyopathy. Am. Heart J. 1997; 133: 184-189.
  33. Jeng J. R. Left ventricular mass, carotid wall thickness and angiotensinogen gene polymorphism in patients with hypertension. Am. J. Hypertens. 1999; 12: 443-450.
  34. Fernandez Llama P., Poch E., Oriola J. et al. Angiotensinogen gene M235T and T174M polymorphisms in essential hypertension: relation with target organ damage. Am. J. Hypertens. 1998; 11 (4, pt 1): 439-444.
  35. Pontremoli R., Sofia A., Tirotta A. et al. The deletion polymorphism of the angiotensin-1-converting enzyme gene is associated with target organ damage in essential hypertension. J. Am. Soc. Nephrol. 1996; 7: 2550-2558.
  36. Rigat В., Hybert C., Alhenc-Gelas F. et al. An insertion/deletion polymorphism of angiotensin I converting enzyme accounting for half of the variance of the serum enzyme levels. J Clin. Invest. 1990; 86: 1343-1346.
  37. DanserA. H., Schalekamp M. A., Bax W. A. et al. Angiotensinconverting enzyme in the human heart. Effect of the deletion/ insertion polymorphism. Circulation 1995; 92: 1387-1388.
  38. Staessen J. A., Wang J. G., Ginocchio G. et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J. Hypertens. 1997; 15 (12 pt 2): 1579-1592.
  39. Wuyts В., Delanghe J., De Buyzere M. Angiotensin I converting enzyme insertion/deletion polymorphism: clinical implications. Acta Clin. Belg. 1997; 52 (6): 338-349.
  40. Iwai N., Ohmichi N., Nakamura Y., Kinoshita M. DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 1994; 90 (6): 2622- 2628.
  41. Prasad N., Okane R. P., Johnstone H. A. et al. The relationship between blood pressure and left ventricular mass in essential hypertension is observed only in the presence of the angiotensin-converting enzyme deletion allele. QLM. 1994- 87659-662.
  42. Nakahara K., Matsushita S., Matsuoka H. Insertion/deletion polymorphism in the angiotensin-converting enzyme gene affects cardiac weight. Circulation 2000; 101 (2): 148-151.
  43. Lindpaintner K., Lee M., Larson M. G. et al. Absence of association or genetic linkage between the angiotensin-converting enzyme gene and left ventricular mass. N. Engl. J. Med. 1996; 334 (16): 1023-1028.
  44. Hamon M., Amant C., Bauters C. et al. Association of angiotensin-converting enzyme and angiotensin II type 1 receptor genotypes with left ventricular function and mass in patients with angiographically normal coronary arteries. Heart 1997; 77 (6): 502-505.
  45. Contreras L. J., Vaca B. F., Carraras F. et al. UsefuUness of the 1/D angiotensin-converting enzyme genotype for detecting the risk of left ventricular hypertrophy in pharmacologically treated hypertensive men. J. Hum. Hypertens. 2000: 14 (5): 327-331.
  46. Kusnetsova Т., Staessen J. A., Wang J. et al. D/I polymorphism of the ACE gene and left ventricular hypertrophy. J. Hypertens. 1999; (suppl. 3): 250.
  47. Clarkson P. В., Prasad N., MacLeod С. et al. Influence of the angiotensin converting enzyme I/D gene polymorphism on left ventricular diastolic filling in patients with essential hypertension. J. Hypertens. 1997; 15: 995-1000.
  48. Osterop A. P., Kofflard M. J., Sandkuiji L. A. et al. ATI receptor gene A/C polymorphism contributes to cardiac hypertrophy in subjects with hypertrophic cardiomyopathy. Hypertension 1998; 32: 825-830.
  49. Wong K. K., Summers K. M., Burstow D. J., West M. J. Genetic variants of proteins from the renin angiotensin system are associated with pressure load cardiac hypertrophy. Clin. Exp. Pharmacol. Physiol. 1996; 23: 587-590.
  50. Amant C., Hamon M., Banters С. et al. The angiotensin II type 1 receptor gene polymorphism is associated with coronary vasoconstriction. J. Am. Coll. Cardiol. 1997; 29: 486-490.
  51. Lajemi M., Labat C., Gautier S. et al. Angiotensin И type 1 receptor -153 A/G and 1166 A/C gene polymorphisms and increase in aortic stiffness with age in hypertensive subjects. J. Hypertens. 2001; 19 (3): 407-413.
  52. Schmieder R. E., Erdmann J., Delles С. Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. J. Am. Coll. Cardiol. 2001; 37 (1): 175-182.
  53. Kupari M., Hautanen A., Lankinen L. Associations between human aldosterone synthase (CYP11B2) gene polymorphism and left ventricular size, mass and function. Circulation 1998; 97: 569-575.
  54. Schunkert H., Hengstenberg C., Holmer S. R. et al. Lack of association between polymorphism of the aldosterone synthase gene and left ventricular structure. Circulation 1999; 99: 2225-2260.
  55. Степанов В. А., Пузырев К. В., Спиридонова М. Г. и др. Полиморфизм ангиотензинпревращающего фермента и NOсинтазы у лиц с артериальной гипертензией, гипертрофией левого желудочка и гипертрофической кардиомиопатией. Генетика 1998; 34 (И): 1578-1581.
  56. Lacolley P., Gauiter S., Poirer О. et al. Nitric oxide synthase gene polymorphism, blood pressure and aortic stiffness in normotensive and hypertensive subjects. J. Hypertens. 1998; 16: 31-35.
  57. Siffert W., Rosskopf D., Siffert G. et al. Association of the human G-protein (33 subunit variant with hypertension. Nat. Genet. 1998; 18: 45-48.
  58. Poch E., Gonzales D., Gomez-Angetats E. et al. G-protein p3subunit variant and left ventricular hypertrophy in essential hypertension. Hypertension 2000; 35: 214-218.
  59. Semplicini A., Siffert W., Sartory M. et al. G-protein betarsubunit 825T allele is associated with increased left ventricular mass in young subjects with mild hypertension. Am. J. Hypertens. 2001; 14(12): 1191-1195.
  60. Nadal-Ginard В., Kajstura J., Leri A., Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ. Res. 2003; 92 (2): 139-150.
  61. Weber К. Т. Cardioreparation in hypertensive heart disease. Hypertension 2001; 38 (3, pt 2): 588-591.
  62. Cooper G. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Ann. Rev. Med. 1997; 48: 13- 23.
  63. Berk В. С. Vascular smooth muscle growth: autocrine growth mechanisms. Physiol. Rev. 2001; 81 (3): 999-1030.
  64. Моисеева О. М., Семенова Е. Г., Полевая Е. В. и др. Моделирование гипертрофии миокарда in vitro для решения вопросов медикаментозной коррекции. Цитология 1998; 40 (12). 1025-1030.
  65. Powell D. W., Mifflin R. С., Valentich J. D. et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am. J. Physiol. 1999; 277 (46): C1-C19.
  66. Topper J. N. TGF-p in the cardiovascular system: molecular mechanisms of a context-specific growth factor. Trends Cardiovasc. Med. 2000; 10 (3): 132-137.
  67. Campbell S. E., Katwa L. C. Angiotensin II stimulated expression of transforming growth factor-p, in cardiac fibroblasts and myofibroblasts. J. Mol. Cell. Cardiol. 1997; 29 (7): 1947-1958.
  68. Ruwhof C., van Wamel A. E., Egas J. M., van der Laarse A. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol. Cell. Biochem. 2000; 208 (1-2): 89-98.
  69. Laviades C., Varo N., Diet J. Transforming growth factor-p in hypertensives with cardiorenal damage. Hypertension 2000; 36 (4): 517-522.
  70. Derhaschnig U., Shehata M., Herkner H. Increased levels of transforming growth factor-beta 1 in essential hypertension. Am. J. Hypertens. 2002; 15 (3): 207-211.
  71. Diet J., Laviades C., Mayor G. Increased serum concentrations of procollagen peptides in essential hypertension. Circulation 1995; 91 (5): 1450-1456.
  72. Querejeta R., Varo N., Lopez B. et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 2000; 101 (14): 1729-1735.
  73. Mancia G., Parati G. Ambulatory blood pressure monitorinj and organ damage. Hypertension 2000; 36 (5): 894-900.
  74. Weber К. Т. Extracellular matrix remodeling in heart failure: ; role for de novo angiotensin II generation. Circulation 1997 96 (11): 4065-4082.
  75. Taegtmeyer H., McNulty P., Young M. E. Adaptation and maladaptation of the heart in diabetes: Part I. Circulation 2002; 10: (14): 1727-1733.
  76. Dintenfass L. Hyperviscosity in hypertension. Sydney: Pergamon Press; 1981.
  77. Wakefield L. M., Smith D. M., Flanders K. C., Sporn M. B. Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. J. Biol. Chem. 1988; 263 (16): 7646-7654.
  78. Faller D. V. Endothelial responses to hypoxic stress. Clin. Exp Pharmacol. Physiol. 1999; 26 (1): 74-84.
  79. Mehta J. L., Chen H. J., Li D. Y. Protection of myocytes frorr hypoxia-reoxygenation injury by nitric oxide is mediated by modulation of transforming growth factor-pi. Circulatior 2002; 105 (18): 2206-2211.
  80. Adams D. H., Nash G. B. Disturbance of leucocyte circulation and adhesion to the endothelium as factors in circulatory pathology. Br. J. Anaesth. 1996; 77 (1): 17-31.
  81. Фрейдлин И. С., Тотолян А. А. Клетки иммунной системы. СПб: Наука; 2000; т. I-II.
  82. Montrucchio G., Alloatti G., Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol. Rev. 2000; 80 (4): 1669-1699.
  83. Tedgui A., Mallat Z. Anti-inflammatory mechanisms in the vacsular wall. Circ. Res. 2001; 88 (9): 877-887.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2004 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies