The test for nitric oxide metabolites in the exhaled aircondensate as a method of assessing NO-reactivity of theairways in patients with bronchial asthma


Cite item

Full Text

Abstract

Aim. To estimate airways NO-reactivity in response to their stimulation with fenoterol in different
clinical forms of bronchial asthma (BA).
Material and methods. The study included 73 patients with BA: mild disease was in 21, moderate in 24 and severe - in 28 patients. Severe BA patients were divided into two subgroups: with a stable
course (n - 15) and unstable course (n = 13). NO-producing function of the airways was estimated
by concentration of stable NO-metabolites (mNO)(N02, N03) in exhaled air condensate.
Results. Spontaneous NO-producing activity of the airways increases and reaches maximum in severe
unstable asthma. Fenoterol-stimulated NO-production was minimal in mild BA while the most significant augmentation of mNO was observed in unstable BA. Basal level of mNO and velocity parameters
of external respiration function correlated.
Conclusion. Estimation of NO-reactivity of the airways in the test with fenoterol with calculation of
the index of airways NO-reactivity provides additional information about respiratory system condition
in BA patients which may be used in clinical pulmonology.

References

  1. Мотавкин П. А., Гельцер Б. И. Клиническая и экспериментальная патофизиология легких. М.: Наука; 1998.
  2. Barnes P. J. Airway epithelial receptors. Eur. Respir. Rev. 1994; 4 (23): 371-379.
  3. Kamosinska В., Radomski A., Man S. F. et al. Role of inducible nitricoxide synthase in regulation of whole-cell current in lung epithelial cells. J. Pharmacol. Exp. Ther. 2000; 295 (2): 500-505.
  4. De Sanctis G. Т., MacLean J. A., Hamada K. et al. Contribution of nitric oxide synthases 1 > 2 and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma.J. Exp. Med. 1999; 189 (10): 1621-1630.
  5. Fagan K. A., Tyler R. C, Sato K. et. al. Relativ contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am. J. Physiol. 1999; 277: 472-478.
  6. Yates D. H., Kharitonov S. A., Barnes P. J. Effect of short- and long-acting inhaled p2-agonists on exhaled nitric oxide in asthmatic patients. Eur. Respir. J. 1997; 10 (7): 1483-1488.
  7. Adnot S., Raffestin В., Eddahibl S. NO in the lung. Respir. Physiol. 1995; 101 (2): 109-120.
  8. Asano K., Chee С. В., Gaston В. et al. Constitutive and inducible nitric oxide synthase gene-expression, regulation and activty in human lung epithelial cells. Proc. Natl. Acad. Sci. US 1994; 91 (21): 1089-1093.
  9. Furukawa K., Harrison D. J., Salen D. et al. Expression of nitric oxide synthase in human nasal mucosa. Am. J. Respir. Crit. Care Med. 1996; 153 (2): 847-850.
  10. Barnes P. J. Nitric oxide and asthma. Res. Immunol. 1995; 146 (9): 698-702.
  11. Barnes P. J., Liew F. Y. Nitric oxide and asthmatic inflammation. Immunol. Today 1996; 17 (3): 148.
  12. Holgate S. T. Epithelial damage and response. Clin. Exp. Allergy 2000; 30: 37-41.
  13. Hamid Q., Springall D. R., Riveros-Moreno V. Induction of nitric oxide synthase in asthma. Lancet 1993; 342: 1510-1513.
  14. Kobzik L., Bredt D. S., Lowenstein С J. Nitric oxide synthase in human and rat lung: immunocytochemical and histichemical localisation. Am. J. Respir. Cell Mol. Biol. 1993; 9: 371- 377.
  15. Haddad I. Y., Pataki С, Ни P. et al. Quantitation of nitrosine levels in lung sections of patients and animals with acute lung injury J. Clin. Invest. 1994; 94 (6): 2407-2413.
  16. Чучалин А. Г. Тяжелые формы бронхиальной астмы. Consilium medicum 2000; 2 (10): 411-414.
  17. Чучалин А. Г. Бронхиальная астма. М.: Агар; 1997.
  18. Kharitonov S. A., Yates D., Robbins R. A. et al. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994; 343: 133-135.
  19. Гельцер Б. И., Хасина М. А., Собина А. И. Взаимосвязь липидного состава экспиратов и вентиляционной функции легких у больных острой пневмонией. Тер. арх. 1990; 12: 20-23.
  20. Barnes P. J. Pathophysiology of asthma. Br. J. Clin. Pharmacol. 1996; 42: 3-10.
  21. Vanhoutte P. M. Epithelium-derived relaxing factor(s) and bronchial reactivity. J. Allergy Clin. Immunol. 1989; 83: 855- 861.
  22. Ichinose M., Sugiura H., Yamagata S. et al. Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am. J. Respir. Crit. Care Med. 2000; 162 (2): 701-706.
  23. Hammermann R., Dreissig M. D., Mossner J. et al. Nuclear factor-kappaB mediates simultaneous induction of inducible ni- tric-oxide synthase and upregulation of the cationic amino acid transporter CAT-2B in rat alveolar macrophages. Mol. Pharmacol. 2000; 58 (6): 1294-1302.
  24. Meli R., Ferrante M. C, Raso G. M. et al. Effect of fumonisin B, on inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated J774A.1 cells. Life Sci. 2000; 67 (23): 2845- 2853.
  25. Ryu S. Y., Jeong K. S., Kang B. N. et al. Modulation of transferrin synthesis, transferrin receptor expression, iNOS expression and NO production in mouse macrophages by cytokines, either alone or in combination. Anticancer Res. 2000; 20 (5A): P. 3331-3338.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2003 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies