Role of insulin resistance in pathogenesis of diabetes mellitus type 2


Cite item

Full Text

References

  1. Reaven G. M. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-1607.
  2. Cam F. Insulin resistance in obese and nonobese man. J. Clin. Endocrinol. Met. 1991; 73: 691-695.
  3. Duncan M. N., Singh B. M., Wise P. H. et al. A simple measure of insulin resistance. Lancet 1995; 346: 120-121.
  4. Banerji M. A., Chaiken R. I., Gordon D. et al. Does intra-abdominal adipose tissue in black men determine whether N1DDM is insulin-resistant or insulin-sensitive. Diabetes 1995; 44: 141-146.
  5. Groop L., Ekstrand A., Forsblom C. et al. Insulin resistance, hypertension and microalbuminas in patients with type 2 (noninsulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 642-647.
  6. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocrine Rev. 1998; 19: 477-490.
  7. Haffner S. M., Stern M. P., Mitchell B. D. et al. Incidence of type 2 diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesiry, and body-fat distribution. Diabetes 1990; 29: 283-290.
  8. Lillioja S., Mott D. M., Spraul M. et al. Insulin resistance and secretory dysfunction as precursors of non-insulin-clepcndent diabetes mellitus: prospective studies of Pima Indians. N. Engl. J. Med. 1993; 329: 1922-1988.
  9. Ferranninu E., Camastra S., Coppack S. W. et al. Insulin action and non-esterified fatty acids. Proc. Nutr. Soc. 1997; 56: 573-761.
  10. Frayn K. N., Williams С. М., Amer P. Are increased plasma non-esterified fatty acid concentration a risk marker for coronary heart disease and chronic disease? Clin. Sci. 1996; 90: 243-253.
  11. Paolisso G., Tataranni A., Foley J. E. et al. High concentration of fasting plasma nonesterified fatty acids is a risk factor for the development of NIDD. Diabetologia 1995; 38: 1213-1217.
  12. Dobbins R. L., Chester M. W., Daniels M. B. et al. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 1998; 47: 1613-1618.
  13. Boden G., Chen X., Iqbal N. Acute lowering of plasma fatty acids lower insulin secretion in diabetic and non-diabetic subjects. Ibid. 1609-1612.
  14. Paolisso G., Tagliamonte M. R., Rizzo M. R. et al. Lowering fatty acids potentiales acute insulin response in first degree relatives of people with type II diabets. Diabetologia 1998; 41: 1127-1130.
  15. Boden G., Chen X., Rosner J., Barton M. Effects of a 48-h fat infusion on insulin secretion and glucose utilisation. Diabetes 1995; 44: 1239-1242.
  16. McGarry J. D., Dobbins R. L. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 1999; 42: 128-138.
  17. Lee Y., Hirose H., Ohneda M. et al. p-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-p-cell relationships. Proc. Natl. Acad. Sci. USA 1994; 91: 1087-7-1088.
  18. Shimabukuro M., Ohneda M., Lee Y., Unger R. H. Role of nitric oxide in obesity-induced beta cell disease. J. Clin. Invest. 1997; 100: 290-295.
  19. Shimabukuro M., Koyama K., Lee Y., Unger R. H. Leptin- or troglitasone-induced lipopenia protects istets from interleukin IP cytoxicity. Ibid. 1750-1754.
  20. Shimabukuro M., Zhou Y.-T., Levi M., Linger R. H. Fatty acidindiced p-cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 1998; 95: 2498-2502.
  21. Pick A., Clark J., Kubstrup С. et al. Role of apoptosis in failure of p-cell mass compensation for insulin resistance and p-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998: 47: 358-364.
  22. Utriainen Т., Takata Т., Luotolahti M. et al. Insulin resistance characterizes glucose uptake in skeletal muscle but in the heart in NIDDM. Diabetologia 1998; 41: 555-559.
  23. Taylor S. I., Moller D. E. Mutations of the insulin receptor gene. In: Moller D. E., ed. Insulin resistance. New York: Wiley; 1993. 83-
  24. Terauchi Y., Iwamoto K., Tamemoto H. et al. Development of non-insulin-dependent diabetes mellitus in the doubte knockout mice with disruption of insulin receptor substrate-1 and pcell glucokinase genes. J. Clin. Invest. 1997; 99: 861-866.
  25. Jenkins А. В., Stoiiien L. N. Insulin resistance and hypersulinemia in insulin receptor substrate-1 knockout mice. Diabetologia 1997; 40: 1113-1114.
  26. Shimomura H., Sanke Т., Veda K. et al. A missense mutation of the muscle glycogen synthase gene (M4116V) is associated with insulin resistance in the Japanese population. Ibid. 947- 952.
  27. Diraison F., Large V., Brunengraber H., Beylot M. Non-invasive tracing of liver intermediary metanolism in normal subjects and in moderately hyperglyeaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM. Ibid. 1998; 41: 212-220.
  28. Kelly L. J., Vicario P. P., Thompson G. M. et al. Peroxisome proliferator-activated receptors у and a mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expressin. Endocrinology 1998; 139: 4920-4927.
  29. Harris P. K. W., Kletzien R. F. Localization of a pioglitazone response element in the adipocyte fatty acid-binding protein gene. Mol. Pharmacol. 1994: 45: 439-445.
  30. Kruszynska Y. T, Mukherjee R., Jow L. et al. Skeletal nuscle peroxisome proliferator-activated receptory у expression in obesity and non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1998; 101: 543-548.
  31. Wu Z., Xie Y., Morrison R. F. et al. PRARy induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPa during the conversion of 3T3 fibroblast into adipocytes. Ibid. 22-32.
  32. Hallakou S., Foufelle F., Doare L. et al. Pioglitazone-induced increase of insulin sensitivity in the muscles of the obese Zucker fa/fa rat cannot be explained by local adipocytes differentiation. Diabetologia 1998; 41: 963-968.
  33. Brockley M., Schneider R. L. The onset of blood glucose response in patients with type 2 diabetes treated with pioglitazone. Diabetes 2000; 49(suppl. I): A99, 400.
  34. Schneider R. L., Mathisen A. L. The evaluation of baseline blood glucose levels on glycemie control in pioglitazone-treated patients with type 2 diabetes. Ibid. A124. 505.
  35. Egan J. W., Mathisen A. J. The effect of pioglitazone on glucose control and lipid profile in patients with type 2 diabetes. Ibid. A105.
  36. Shaffer S., Rubin С. J., Zhu E. The effect of pioglitazone on the profile in patients with type 2 diabetes. Ibid. A125, 508.
  37. Gora B. Pioglitazone is superior to acarbose in improving glycemie control and dyslipidemia in patients with type 2 diabetes - an interim analysis. Diabetologia 2000; 43(suppl. 1): A193, 740.
  38. Geerlof J., Glazer B. Effect of food on the pharmacokinetics of pioglitazone. Ibid. A192. 739.
  39. Edwards G., Eckland D. Pharmacokinetics of pioglitazone in patients with renal impairment. Ibid. 1999; 42(suppl. 1): A230, 863.
  40. Kortboyer J. M., Eckland D. Pioglitazone has low potential for drug interactipns. Ibid. A228. 855.
  41. Rosenstock J. Improved insulin sensitivity and beta cell responsivity suggested by HOMA analysis of pioglitazone therapy. Ibid. 2000; 43(suppl. I): A192, 738.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2003 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies