Role of insulin resistance in pathogenesis of diabetes mellitus type 2
- Authors: Balabolkin MI1, Klebanova EM1, hanov ОL1, Lomonosov КМ1
-
Affiliations:
- Issue: Vol 78, No 1 (2003)
- Pages: 72-77
- Section: Editorial
- URL: https://ter-arkhiv.ru/0040-3660/article/view/29298
Cite item
Full Text
Abstract
Keywords
References
- Reaven G. M. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-1607.
- Cam F. Insulin resistance in obese and nonobese man. J. Clin. Endocrinol. Met. 1991; 73: 691-695.
- Duncan M. N., Singh B. M., Wise P. H. et al. A simple measure of insulin resistance. Lancet 1995; 346: 120-121.
- Banerji M. A., Chaiken R. I., Gordon D. et al. Does intra-abdominal adipose tissue in black men determine whether N1DDM is insulin-resistant or insulin-sensitive. Diabetes 1995; 44: 141-146.
- Groop L., Ekstrand A., Forsblom C. et al. Insulin resistance, hypertension and microalbuminas in patients with type 2 (noninsulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 642-647.
- Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocrine Rev. 1998; 19: 477-490.
- Haffner S. M., Stern M. P., Mitchell B. D. et al. Incidence of type 2 diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesiry, and body-fat distribution. Diabetes 1990; 29: 283-290.
- Lillioja S., Mott D. M., Spraul M. et al. Insulin resistance and secretory dysfunction as precursors of non-insulin-clepcndent diabetes mellitus: prospective studies of Pima Indians. N. Engl. J. Med. 1993; 329: 1922-1988.
- Ferranninu E., Camastra S., Coppack S. W. et al. Insulin action and non-esterified fatty acids. Proc. Nutr. Soc. 1997; 56: 573-761.
- Frayn K. N., Williams С. М., Amer P. Are increased plasma non-esterified fatty acid concentration a risk marker for coronary heart disease and chronic disease? Clin. Sci. 1996; 90: 243-253.
- Paolisso G., Tataranni A., Foley J. E. et al. High concentration of fasting plasma nonesterified fatty acids is a risk factor for the development of NIDD. Diabetologia 1995; 38: 1213-1217.
- Dobbins R. L., Chester M. W., Daniels M. B. et al. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 1998; 47: 1613-1618.
- Boden G., Chen X., Iqbal N. Acute lowering of plasma fatty acids lower insulin secretion in diabetic and non-diabetic subjects. Ibid. 1609-1612.
- Paolisso G., Tagliamonte M. R., Rizzo M. R. et al. Lowering fatty acids potentiales acute insulin response in first degree relatives of people with type II diabets. Diabetologia 1998; 41: 1127-1130.
- Boden G., Chen X., Rosner J., Barton M. Effects of a 48-h fat infusion on insulin secretion and glucose utilisation. Diabetes 1995; 44: 1239-1242.
- McGarry J. D., Dobbins R. L. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 1999; 42: 128-138.
- Lee Y., Hirose H., Ohneda M. et al. p-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-p-cell relationships. Proc. Natl. Acad. Sci. USA 1994; 91: 1087-7-1088.
- Shimabukuro M., Ohneda M., Lee Y., Unger R. H. Role of nitric oxide in obesity-induced beta cell disease. J. Clin. Invest. 1997; 100: 290-295.
- Shimabukuro M., Koyama K., Lee Y., Unger R. H. Leptin- or troglitasone-induced lipopenia protects istets from interleukin IP cytoxicity. Ibid. 1750-1754.
- Shimabukuro M., Zhou Y.-T., Levi M., Linger R. H. Fatty acidindiced p-cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 1998; 95: 2498-2502.
- Pick A., Clark J., Kubstrup С. et al. Role of apoptosis in failure of p-cell mass compensation for insulin resistance and p-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998: 47: 358-364.
- Utriainen Т., Takata Т., Luotolahti M. et al. Insulin resistance characterizes glucose uptake in skeletal muscle but in the heart in NIDDM. Diabetologia 1998; 41: 555-559.
- Taylor S. I., Moller D. E. Mutations of the insulin receptor gene. In: Moller D. E., ed. Insulin resistance. New York: Wiley; 1993. 83-
- Terauchi Y., Iwamoto K., Tamemoto H. et al. Development of non-insulin-dependent diabetes mellitus in the doubte knockout mice with disruption of insulin receptor substrate-1 and pcell glucokinase genes. J. Clin. Invest. 1997; 99: 861-866.
- Jenkins А. В., Stoiiien L. N. Insulin resistance and hypersulinemia in insulin receptor substrate-1 knockout mice. Diabetologia 1997; 40: 1113-1114.
- Shimomura H., Sanke Т., Veda K. et al. A missense mutation of the muscle glycogen synthase gene (M4116V) is associated with insulin resistance in the Japanese population. Ibid. 947- 952.
- Diraison F., Large V., Brunengraber H., Beylot M. Non-invasive tracing of liver intermediary metanolism in normal subjects and in moderately hyperglyeaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM. Ibid. 1998; 41: 212-220.
- Kelly L. J., Vicario P. P., Thompson G. M. et al. Peroxisome proliferator-activated receptors у and a mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expressin. Endocrinology 1998; 139: 4920-4927.
- Harris P. K. W., Kletzien R. F. Localization of a pioglitazone response element in the adipocyte fatty acid-binding protein gene. Mol. Pharmacol. 1994: 45: 439-445.
- Kruszynska Y. T, Mukherjee R., Jow L. et al. Skeletal nuscle peroxisome proliferator-activated receptory у expression in obesity and non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1998; 101: 543-548.
- Wu Z., Xie Y., Morrison R. F. et al. PRARy induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPa during the conversion of 3T3 fibroblast into adipocytes. Ibid. 22-32.
- Hallakou S., Foufelle F., Doare L. et al. Pioglitazone-induced increase of insulin sensitivity in the muscles of the obese Zucker fa/fa rat cannot be explained by local adipocytes differentiation. Diabetologia 1998; 41: 963-968.
- Brockley M., Schneider R. L. The onset of blood glucose response in patients with type 2 diabetes treated with pioglitazone. Diabetes 2000; 49(suppl. I): A99, 400.
- Schneider R. L., Mathisen A. L. The evaluation of baseline blood glucose levels on glycemie control in pioglitazone-treated patients with type 2 diabetes. Ibid. A124. 505.
- Egan J. W., Mathisen A. J. The effect of pioglitazone on glucose control and lipid profile in patients with type 2 diabetes. Ibid. A105.
- Shaffer S., Rubin С. J., Zhu E. The effect of pioglitazone on the profile in patients with type 2 diabetes. Ibid. A125, 508.
- Gora B. Pioglitazone is superior to acarbose in improving glycemie control and dyslipidemia in patients with type 2 diabetes - an interim analysis. Diabetologia 2000; 43(suppl. 1): A193, 740.
- Geerlof J., Glazer B. Effect of food on the pharmacokinetics of pioglitazone. Ibid. A192. 739.
- Edwards G., Eckland D. Pharmacokinetics of pioglitazone in patients with renal impairment. Ibid. 1999; 42(suppl. 1): A230, 863.
- Kortboyer J. M., Eckland D. Pioglitazone has low potential for drug interactipns. Ibid. A228. 855.
- Rosenstock J. Improved insulin sensitivity and beta cell responsivity suggested by HOMA analysis of pioglitazone therapy. Ibid. 2000; 43(suppl. I): A192, 738.
