Пульсирующие тепловые трубы и их применение в космической технике

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Рассмотрены двухфазные теплопередающие устройства – пульсирующие тепловые трубы – как перспективные средства обеспечения теплового режима космических аппаратов, более эффективные с точки зрения затрат энергии, чем активные двухфазные системы с механической прокачкой теплоносителя. Несмотря на большое количество экспериментальных работ, в том числе посвященных кратковременной микро- и гипергравитации на параболической траектории и долговременной микрогравитации на орбите Земли, подтверждающих устойчивость режимов работы труб, закономерности их зависимости от тепловой конфигурации (температур испарителя и конденсатора, свойств рабочей жидкости, наличия присадок, коэффициента заполнения, поверхностных свойств трубы, угла наклона при наличии веса жидкости), способность термостабилизировать панели космических аппаратов и точные модели, позволяющие выбирать параметры трубы, находятся в процессе разработки. Поэтому в обзоре большое внимание уделено теоретическим работам: постановкам и методам решения краевых и обратных задач. Решение задач диагностики позволяет определять передаваемый тепловой поток, а задач идентификации – исследовать двухфазный поток по температурным измерениям на поверхности трубы. Показано, что можно применять аддитивные технологии для изготовления пульсирующих труб, изготавливать гибкие трубы и термостабилизированные панели в виде металлических, гибких или композитных пластин с каналами внутри как элементов систем обеспечения теплового режима перспективных космических аппаратов. Приведены экспериментальные работы, подтверждающие работоспособность пульсирующих тепловых труб, заполненных жидкими водородом или кислородом, при криогенных температурах.

全文:

受限制的访问

作者简介

О. Алифанов

Московский авиационный институт

编辑信件的主要联系方式.
Email: o.alifanov@yandex.ru
俄罗斯联邦, Москва

А. Викулов

Московский авиационный институт

Email: vikulovag81@gmail.co
俄罗斯联邦, Москва

К. Гончаров

ООО «Научно-производственное объединение «Тепловые агрегаты и системы»

Email: tais@heatpipe.ru
俄罗斯联邦, Москва

А. Ненарокомов

Московский авиационный институт

Email: nenarokomovav@mai.ru
俄罗斯联邦, Москва

参考

  1. Турна Р.Ю., Годунов А.М. Состояние разработок двухфазных систем терморегулирования космических аппаратов // Авiацiйно-космiчна технiка i технологiя. 2021. № 2(170). С. 36.
  2. Смирнов Г.Ф., Савченков Г.А. Пульсирующая тепловая труба. Патент на изобретение. Опубликовано 25.02.1976. Бюллетень № 7. 16.03.1976.
  3. Akachi H. Structure of a Heat Pipe. United States Patent. Patent № 4,921,041. 01.05.1990.
  4. Khandekar S., Manyam S.V.V.S.N.S., Groll M. Two-phase Flow Modeling in Closed Loop Pulsating Heat Pipes // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  5. Khandekar S., Cui X., Groll M. Thermal Performance Modeling of Pulsating Heat Pipes by Artificial Neural Network // 12th Int. Heat Pipe Conf. (IHPC). May 19–24, 2002.
  6. Voirand A., Benselama A.M., Bertin Y. Volume and Saturation Temperature Variation of an Expanding Taylor Bubble in a Heated Capillary // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  7. Bertossi R., Ayel V., Mehta B., Romestant C., Bertin Y., Khandekar S. Motion of Liquid Plugs between Vapor Bubbles in Capillary Tubes: A Comparison between Fluids // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  8. Sun X., Han D., Li S., Gan Zh., Jiao D., Pfotenhauer J. Modelling of Hydrogen Filled Pulsating Heat Pipes Considering Taylor Bubble Generation // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  9. Borisov V., Buz V., Coba A., Kuznetzov I., Zacharchenko A. Modeling and Experimentation of Pulsating Heat Pipes // 12th Int. Heat Pipe Conf. (IHPC). May 19–24, 2002.
  10. Bui N.H., Jung H.S., Kim J.S. Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe // 12th Int. Heat Pipe Conf. (IHPC). May 19–24, 2002.
  11. Yongxi M., Hong Zh., Jun Zh. Investigation on Effective Thermal Conductivity of Oscillating Heat Pipes // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  12. Li Y., Xu J., Li Y. Study of Pulsating Heat Pipe in GIEC, CAS // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  13. Im Y.-B., Kim J.S., Choi Y.-H. Thermal Analysis of a Micro or Mini Pulsating Heat Pipe // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  14. Kim Y.-S., Lee E.-S. Numerical Analysis of Pulsating Heat Pipe Based on the Separated Flow Model // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  15. Srinivasan V., Khandekar S. Motion of an Isolated Liquid Plug Inside a Dry Circular Capillary // 17th Int. Heat Pipe Conf. (IHPC). Kanpur, India, October 13–17, 2013.
  16. Rao M., Lefèvre F., Bonjour J., Khandekar S. Thermally Induced Two-phase Oscillating Flow in a Capillary Tube: Theoretical and Experimental Investigations // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  17. Senjaya R., Inoue T., Suzuki Y. Oscillating Heat Pipe Simulation with Bubble Generation // 15th Int. Heat Pipe Conf. (IHPC). Clemson, USA, April 25–30, 2010.
  18. Bajpai A.K., Khandekar S. Simulation of Heat Transfer in Liquid Plugs Moving Inside Dry Capillary Tubes // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  19. Miyazaki Y., Kawai H., Iwata N., Ogawa H. Operating Limit of Oscillating Heat Pipe // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  20. Miyazaki Y. Principle of Oscillating Heat Pipe // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  21. Nikolayev V.S. Towards Predictive Modeling of Pulsating Heat Pipes // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  22. Mameli M., Marengo M., Khandekar S. Towards Quantitative Validation of a Closed Loop Pulsating Heat Pipe Numerical Model // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  23. Chauris N., Bonnenfant J.-F., Ayel V., Bertin Y., Romestant C. On the Relevance of Local IR Visualization on Tube Walls of Pulsating Heat Pipes: A Modeling Investigation // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  24. Han Y., Shikazono N. Measurement of the Liquid Film Thickness in Micro Tube Slug Flow // Int. J. Heat Fluid Flow. 2009. V. 30. P. 842.
  25. Han Y., Shikazono N., Kasagi N. The Effect of Liquid Film Evaporation on Flow Boiling Heat Transfer in a Microtube // Int. J. Heat Fluid Flow. 2012. V. 55. P. 547.
  26. Daimaru T., Yoshida Sh., Nagai H. Study on Thermal Cycle in Oscillating Heat Pipes by Numerical Analysis // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  27. Sone K., Fujita K., Nagai H. Comparison between Closed-end Oscillating Heat Pipe and Closed-loop Oscillating Heat Pipe by Numerical Calculation // Joint 20th Int. Heat Pipe Conf. (IHPC) and 14th Int. Heat Pipe Symp. (IHPS). Gelendzhik, Russia, September, 07–10, 2021.
  28. Nikolayev V., Sundararaj S. Oscillating Menisci and Liquid Films at Evaporation/Condensation // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  29. Nekrashevych I., Nikolayev V.S. Effect of Tube Heat Conduction on the PHP Start-up // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS), Jeju, Korea, June 12–16, 2016.
  30. Betancur L.A., Mangini D., Mameli M., Filippeschi S., Slongo L.K., Paiva K., Mantelli M., Marengo M. Condenser Temperature Effect on the Transient Behavior of a Pulsating Heat Pipe // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  31. Okazaki Sh., Fuke H., Takahashi K., Kondo M., Kawachi A., Yamada N., Ogawa H. Thermal Performance of a Large Closed Multi-loop Heat Pipe Using HFC-23 and HFC-410A as the Working Fluid // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS), Pisa, Italy, June 10–14, 2018.
  32. Zhang X., Nikolayev V.S. Liquid Film Dynamics during Meniscus Oscillation // Joint 20th Int. Heat Pipe Conf. (IHPC) and 14th Int. Heat Pipe Symp. (IHPS). Gelendzhik, Russia, September, 7–10, 2021.
  33. Mahapatra B., Poonia H., Saha N., Das P.K. Important Non-dimensional Numbers for Pulsating Heat Pipes, Their Significance, and Inter Relationship // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  34. Kim S., Zhang Y., Choi J. Analysis of Entropy Generation in a Pulsating Heat Pipe // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  35. Nikolayev V.S., Nekrashevych I. Vapor Thermodynamics and Fluid Merit for Pulsating Heat Pipe // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  36. Nikolayev V.S., Fourcade F.N. A Model of Stable Functioning of the Single Branch Pulsating Heat Pipe // Joint 20th Int. Heat Pipe Conf. (IHPC) and 14th Int. Heat Pipe Symp. (IHPS). Gelendzhik, Russia, September, 7–10, 2021.
  37. Inoue N., Fujita K., Nagai H. Numerical Study for Improvement of Startup Characteristics of Oscillating Heat Pipe // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  38. Pouryoussefi S.M., Zhang Y. Analysis of Chaotic Flow in a 2D Multi-turn Closed-loop Pulsating Heat Pipe // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  39. Lenhard R., Malcho M., Jandačka J. Modelling of Heat Transfer in the Evaporator and Condenser of the Working Fluid in the Heat Pipe // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  40. Andredaki M., Georgoulas S., Miche N., Marengo M. Effect of Flow Oscillations on the Liquid Film Evaporation and Instability Formation for Elongated Vapour Slugs within Heated Microchannels // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  41. Krambeck L., Betancur L., Domiciano K.G., Mantelli M. Flat Plate Pulsating Heat Pipes with Different Channel Geometries for High Heat Flux Applications // Engenharia Térmica (Thermal Engineering). 2021. V. 20. № 1. P. 12.
  42. Qu J., Li X.J., Wang Q., Sun Q. Thermal Performance Comparison of Closed-loop Oscillating Heat Pipes with and without Internal Microgrooves // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  43. Qu W., Ma T. Experimental Investigation on Flow and Heat Transfer of a Pulsating Heat Pipe // 12th Int. Heat Pipe Conf. (IHPC). May 19–24, 2002.
  44. Karthikeyan V.K., Khandekar S., Pillai B.C. Infrared Thermography of a Closed Loop Pulsating Heat Pipe // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  45. Charoensawan P., Khandekar S., Terdtoon P., Groll M., Kamonpet P., Ingsuwan P. Effect of Inclination Angles on Heat Transfer Characteristics of Closed-loop Oscillating Heat Pipe at Normal Operating Condition // 12th Int. Heat Pipe Conf. (IHPC). May 19–24, 2002.
  46. Ha.-J., Lee T.-K., Park Ch.-M. Heat Transfer Performance of Oscillating Capillary Tube Heat Pipe with Micro-channel Flat Tube // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  47. Ayel V., Romestant C., Bertin Y. Visualization of Flow Patterns in Flat Plate Pulsating Heat Pipe: Influence of Hydraulic Behavior on Thermal Performances // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  48. Pagnoni F., Ayel V., Romestant C., Bertin Y. Experimental Behaviors of Closed Loop Flat Plate Pulsating Heat Pipes: A Parametric Study // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS), Pisa, Italy, June 10–14, 2018.
  49. Kim J., Kim S.J. Study on the Working Fluid Selection for a Pulsating Heat Pipe // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS), Pisa, Italy, June 10–14, 2018.
  50. Pachghare P.R., Mahalle A.M. Thermal Performance of Closed Loop Pulsating Heat Pipe: An Experimental Study with Visualization // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  51. Zhihu X., Minghui X., Wei Q., Jijun Y., Wei L. Experimental Investigation of Closed Loop Pulsating Heat Pipe Using Ammonia Fluid: Effect of Different Turns and Inclination Angles // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  52. Saha N., Sharma P.K. An Experimental Investigation on the Performance of Closed Loop Pulsating Heat Pipe // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  53. Mameli M., Marengo M., Filippeschi S., Manno V. Multi-parametric Investigation on the Thermal Instability of a Closed Loop Pulsating Heat Pipe // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  54. Yu Ch., Ji Y., Chu L., Wang Z., Wu Zh., Ma H. The Phenomenon of Unidirectional Circulating Flow in an Oscillating Heat Pipe // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  55. Kim B.Ch., Li L., Kim J.H., Kim D. A Study on Thermal Performance of Parallel Connected Oscillating Heat Pipe // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS), Jeju, Korea, June 12–16, 2016.
  56. Xue Z.H., Chen L., Xie M.H., Qu W., Li W. Ammonia Pulsating Heat Pipe: A New Full Visualization Experiment and the Operating Mechanism Study // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  57. Taft B.S., Rhodes M. Experimental Investigation of Oscillating Heat Pipes under Direct Current and Pulse Width Modulation Heating Input Conditions // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  58. Verma Bh., Yadav V.L., Srivastava K.K. Heat Transfer Studies in a Closed Loop Pulsating Heat Pipe // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  59. Bhullar Bh.S., Gangacharyulu D., Das S.K. Thermal Resistance and Conductivity Measurement of Screen Mesh Wick Heat Pipe Using Al2O3–DI Water Nanofluids // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  60. Liu Y.-Ch., Wang Y.-Ch., Wang H., Kang Sh.-W. Visualization and Thermal Resistance of Magnetic Nanofluid Pulsating Heat Pipe // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  61. Patel V.M., Rao T.S., Mehta H.B. Effect of Water Based CuO Nanofluid on Startup Mechanism and Thermal Performance of a Closed Loop Pulsating Heat Pipe // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  62. Jang D.S., Lee E.-J., Kim Y. Performance Characteristics of Flat Plate Pulsating Heat Pipes with Mini and Micro-channels // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  63. Yoshida Sh., Daimaru T., Nagai H. A Study on Circulation Flow of Oscillating Heat Pipe with Check Valves by Visualization // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  64. Ling Y., Li X., Zhang X., Liu Zh., Zhao P. Experimental and Theoretical Study on Operation Characteristics of an Oscillating Heat Pipe // Appl. Sci. 2023. V. 13. P. 8479.
  65. Yang H., Khandekar S., Groll M. Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004. P. 291.
  66. Lee K., Kim S.J. Experimental Investigation on Silicon-based Pulsating Heat Pipes with Different Channel Geometries // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  67. Facin A., Betancur L., Mantelli M., Florez J.P., Coutinho B.H. Influence of Channel Geometry on Diffusion Bonded Flat Plat Pulsating Heat Pipes // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  68. Xuehui W., Chao H., Xu G., Haoce Zh., Xiaohong H., Guangming Ch. Experimental Research on Start-up Characteristics and Heat Transfer Performance of Pulsating Heat Pipe with Rectangular Cross-section // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  69. Jun S., Kim S.J. Experimental Study on Flow and Thermal Characteristics of Pulsating Heat Pipes // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  70. Hideyama F., Kawaji M., Koito Y., Tomimura T. Experimental Investigation of a Pulsating Heat Pipe Fabricated by a 3-D Printer // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  71. Xiaolin C., Ping Ch. A Novel Design of Pulsating Heat Pipes with Improved Performance // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  72. Hao T., Li N., Ma X., Lan Zh., Bai T. Experimental Study of Oscillating Heat Pipes with Periodic Expansion-constriction Cross-sections // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  73. Kim J., Kim S.J. Experimental Study on the Effect of the Ratio of Adiabatic Section Length to Condenser Length on the Thermal Performance of Pulsating Heat Pipes // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  74. Dell’innocenti A., Lips S., Sartre V., Blet N., Coulloux J., Bonjour J. Experimental Study of a Flat PHP for the Temperature Homogenisation of Two Symmetric Plates // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  75. de Paiva K.V., Mantelli M.B.H., Verdieri G., Slongo L.K., Reis F., Burg S.J., Nicolau V.B. Experimental Test of Mini, Pulsating, and Heat Spreader Heat Pipes under Microgravity Conditions Aboard Suborbital Rockets // 15th Int. Heat Pipe Conf. (IHPC). Clemson, USA, April 25–30, 2010.
  76. Nekrashevych I., Nikolayev V.S. Pulsating Heat Pipe Simulations: Impact of PHP Orientation // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  77. Katpradit T., Worngratanapaisarn T., Terdtoon P., Ritthidech S., Chareonsawan P., Waowaew S. Effect of Aspect Ratios and Bond Number on Internal Flow Patterns of Closed End Oscillating Heat Pipe at Critical State // 13th Int. Heat Pipe Conf. (IHPC). Shanghai, China, September 21–25, 2004.
  78. Ayel V., Bertin Y., Romestant C., Burban G. Experimental Study of Pulsating Heat Pipes Tested in Horizontal and Vertical Positions // 15th Int. Heat Pipe Conf. (IHPC). Clemson, USA, April 25–30, 2010.
  79. Das Sh.P., Lefèvre F., Bonjour J. Parametric Study of a Two-phase Oscillating Flow in a Capillary Tube // 15th Int. Heat Pipe Conf. (IHPC). Clemson, USA, April 25–30, 2010.
  80. Bonnenfant J.-F., Ayel V., Bertin Y., Romestant C. Experimental Study of Pulsating Heat Pipes Tested in Looped and Unlooped Configurations // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  81. Filippeschi S., Franco A. The Effect of Flexible Pipes on the Instabilities of a Single Turned PHP // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  82. Der O., Marengo M., Bertola V. Thermal Performance of Pulsating Heat Stripes (PHS) Built with Plastic Materials // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  83. Kammuang-lue N., Sakulchangsatjatai P., Terdtoon P. Horizontal Closed-loop Pulsating Heat Pipe with Multiple Heat Sources // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  84. Dufraisse D., Ayel V., Bertin Y., Romestant C. Performances and Limits of a Multi-source Pulsating Heat Pipe Tested under High Heat Flux Density // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  85. Majumder A., Mehta B., Khandekar S. An Experimental Study of Local Nusselt Number for Gas–Liquid Taylor Bubble Flow in a Mini-channel // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  86. Mehta B., Khandekar S. Infrared Thermography of Pulsating Taylor Bubble-train Flow in a Mini Channel // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  87. Srinivasan V., Kumar S., Asfer Md., Khandekar S. Oscillation of an Isolated Liquid Plug Inside a Dry Capillary // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  88. Fourgeaud L., Nikolayev V.S., Ercolani E., Duplat J., Gull Ph. In Situ Investigation of Liquid Films in PHP // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  89. Srinivasan V., Rao M., Khandekar S., Lefèvre F., Bonjour J. Thermo-Hydrodynamics of Phase-change Induced Oscillating Taylor Bubble Flows // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  90. Rahatgaonkar A.M., Srinivasan V., Khandekar S. Oscillation of a Completely Wetting Isolated Liquid Plug in a Square Capillary Tube // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  91. Ogawa H., Iwata N., Miyazaki Y. Dependence of Liquid Reservoir Orientation on Behavior of Temperature Controllable Oscillating Heat Pipe // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  92. Ouchi M., Abe Y., Hayashi T., Sato M., Iimura K. Development of High Performance and High Functionalized Heat Pipes // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  93. Rana G.R., Sahu R., Khandekar S., Panigrahi P.K. Hydrodynamics of a Confined Meniscus in a Capillary Tube // 16th Int. Heat Pipe Conf. (IHPC). Lyon, France, May 20–24, 2012.
  94. Rao M., Lefèvre F., Bonjour J., Khandekar S. Thermally Induced Two-phase Oscillating Flow in a Capillary Tube: Experimental Investigations // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  95. Nagai H., Kanayama T., Daimaru T. Heat Transfer Performance of Oscillating Heat Pipe by Difference of Surface Characteristics // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  96. Yamagami K., Fumoto K., Savino R., Kawanami Ts., Inamura T. Heat Transfer Characteristics of Flat Plate Pulsating Heat Pipe Using Self-rewetting Fluids // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  97. Sasa M., Fumoto K., Okabe T., Savino R., Inamura T., Shirota M. Heat Transfer Performance of the Open-loop Micro Pulsating Heat Pipe with Self-rewetting fluids // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  98. Leu Tz.-Sh., Wu Ch.-H. Experimental Studies of Surface Modified Oscillating Heat Pipes // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  99. Betancur L., Mangini D., Facin A., Mantelli M., Paiva K., Coutinho B., Marengo M. Experimental Study of Start-up in a Closed Loop Pulsating Heat Pipe with Alternating Superhydrophobic Channels // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS), Pisa, Italy, June 10–14, 2018.
  100. Ayel V., Slobodeniuk M., Sabathé M., Graziani C., Bertossi R., Romestant C., Bertin Y. Flat-plate Pulsating Heat Pipe Tested with Surfactant: Experimental Investigation and Use of Transient Reactivation Phases for the Fluid-wall Heat Transfers Analysis // Joint 20th Int. Heat Pipe Conf. (IHPC) and 14th Int. Heat Pipe Symp. (IHPS). Gelendzhik, Russia, September, 07–10, 2021.
  101. Betancur L., Facin A., Gonçalves P., Paiva K., Mantelli M., Nuernberg G. Study of Diffusion Bonded Flat Plate Closed Loop Pulsating Heat Pipes with Alternating Porous Media // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  102. Odagiri K., Oka Ch., Kondou Ch., Nagano H. Thermo-fluid Dynamics in a Wettability-enhanced Evaporator Based on Microscale Infrared/Visible Observations // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  103. Iwata N., Ogawa H., Fukuda S., Miyazaki Y. Visualization of Oscillating Heat Pipe under Microgravity // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  104. Ayel V., Araneo L., Marzorati P., Romestant C., Bertin Y., Marengo M. Visualizations of the Flow Patterns in a Closed Loop Flat Plate PHP with Channel Diameter above the Critical One and Tested under Microgravity // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  105. Ayel V., Pietrasanta L., Lalizel G., Medrinal B., Romestant S., Bertin Y., Marengo M. Thermo-hydraulic Analysis of Semi-transparent Flat-plate Pulsating Heat Pipes Tested under Normal and Microgravity Regimes // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  106. Mameli M., Catarsi A., Mangini D., Pietrasanta L., Fioriti D., La Foresta M., Caporale L., Miche N., Marengo M., Di Marco P., Filippeschi S. Large Diameter Pulsating Heat Pipe for Future Experiments on the International Space Station: Ground and Microgravity Thermal Response // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  107. Mangini D., Pozzoni M., Mameli M., Pietrasanta L., Bernagozzi M., Fioriti D., Miché1 N., Araneo L., Filippeschi S., Marengo M. Infrared Analysis and Pressure Measurements on a Single Loop Pulsating Heat Pipe at Different Gravity Levels // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  108. Piacquadio S., Catarsi A., Nannipieri P. et al. Start-up of a Large Diameter Pulsating Heat Pipe on Ground and on Board a Sounding Rocket // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  109. Slobodeniuk M., Bertossi R., Ayel V., Romestant C., Bertin Y. Effect of Non-condensable Gases on the Flat Plate Pulsating Heat Pipe under Various Gravity Conditions // Joint 20th Int. Heat Pipe Conf. (IHPC) and 14th Int. Heat Pipe Symp. (IHPS). Gelendzhik, Russia, September, 07–10, 2021.
  110. Okamoto A., Ando N., Sugita H. Initial Evaluation of On-Orbit Experiment of Flat-plate Heat Pipe // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  111. Taft B.S., Irick K.W. ASETS-II Oscillating Heat Pipe Space Flight Experiment: The First Six Months on Orbit // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  112. Wilson C.A., Drolen B., Taft B., Allison J. Advanced Structurally Embedded Thermal Spreader II (ASETS-II) Oscillating Heat Pipe Flight Experiment and Database // Joint 21st Int. Heat Pipe Conf. (IHPC) and 15th Int. Heat Pipe Symp. (IHPS). Melbourne, Australia, February 5–8, 2023.
  113. Iwata N., Ogawa H., Miyazaki Y., Kawai H., Fukuda S. Innovative Thermal Design Satellite with Networked Variable Conductance Oscillating Heat Pipes // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  114. Belfi F., Iorizzo F., Galbiati C., Lepore F. Space Structures with Embedded Flat Plate Pulsating Heat Pipe Built by Additive Manufacturing Technology: Development, Test, and Performance Analysis // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  115. Ando M., Tanaka K., Okamoto A., Matsushige K., Tanaka K., Okuma S. Experimental Demonstration of an Oscillating Heat Pipe Fabricated by Metal Additive Manufacturing // Joint 20th Int. Heat Pipe Conf. (IHPC) and 14th Int. Heat Pipe Symp. (IHPS). Gelendzhik, Russia, September 07–10, 2021.
  116. Cheverda V., Litvinceva A. The Additive Microstructures for Heat Transfer Enhancement // Joint 21st Int. Heat Pipe Conf. (IHPC) and 15th Int. Heat Pipe Symp. (IHPS). Melbourne, Australia, February 5–8, 2023.
  117. Iwata N., Miyazaki Y., Ogawa H. Thermal Performance of Extra-thin Oscillating Heat Pipe // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS), Pisa, Italy, June 10–14, 2018.
  118. Iwata N., Miyazaki Y., Ogawa H. Small Satellite with Networked Variable Conductance Oscillating Heat Pipe // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  119. Gully P., Bonnet F., Nikolayev V., Luchier N., Tran T.Q. Evaluation of the Vapor Thermodynamic State in PHP // 17th Int. Heat Pipe Conf. (IHPC). Canpur, India, October 13–17, 2013.
  120. Deng H., Sun X., Han D., Wang Sh., Jiao B., Pfotenhauer J.M., Gan Zh. Experimental Study on a Hydrogen Pulsating Heat Pipe with Different Adiabatic Lengths // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  121. Gruss J.-A., Glorion D., Caney N., Geffraye G., Memponteil A. An Improved Correlation to Evaluate the Thermal Resistance of Pulsating Heat Pipes // Joint 18th Int. Heat Pipe Conf. (IHPC) and 12th Int. Heat Pipe Symp. (IHPS). Jeju, Korea, June 12–16, 2016.
  122. Cattani L., Bozzoli F., Mangini D., Mameli M. An Original Look into Pulsating Heat Pipes: Inverse Heat Conduction Approach for Assessing the Thermal Behavior // Joint 19th Int. Heat Pipe Conf. (IHPC) and 13th Int. Heat Pipe Symp. (IHPS). Pisa, Italy, June 10–14, 2018.
  123. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979. 285 с.
  124. Colaço M., Bozzoli F., Cattani L., Pagliarini L. Local Heat Flux Estimation Inside Tubes through Conjugate Gradient Method with Adjoint Operator: Application to the Pulsating Heat Pipes Case // Int. J. Numerical Methods Heat Fluid Flow. 2022. V. 33. № 5. P. 1754.
  125. Алифанов О.М. Обратные задачи теплообмена. М.: Машиностроение, 1988. 280 с.
  126. Razzaghi H., Kowsary F., Layeghi M. Inverse Boundary Problem in Estimating Heat Transfer Coefficient of a Round Pulsating Bubbly Jet: Design of Experiment // Applied Mathematics in science and engineering. 2022. V. 30. № 1. P. 210.
  127. de Souza F.A.S., Colle S. An Inverse Algorithm to Estimate the Heat Transfer Coefficient in the Evaporator Section of a CO2 Pulsating Heat Pipe // 15th Int. Heat Pipe Conf. (IHPC). Clemson, USA, April 25–30, 2010. P. 104.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of a pulsating heat pipe: 1 - sealed body, 2 - evaporator, 3 - channel, 4 - condenser, 5 - floating piston, 6 - spring.

下载 (54KB)
3. Fig. 2. Schematic diagram of a pulsating heat pipe with a closed loop.

下载 (19KB)
4. Fig. 3. Latent (1) and perceived (2) heat in an evaporator with an adiabatic section 100 mm long.

下载 (14KB)
5. Fig. 4. Distribution of liquid and vapor in a pipe filled with ethanol.

下载 (45KB)
6. Fig. 5. Geometric model of a PTT: (a) - elementary cell of a PTT; (b) - diagram of thermal conductivity of oscillating liquid plugs.

下载 (33KB)
7. Fig. 6. Results of modeling the pressure of vapor bubbles: (a) - without taking into account the formation of bubbles in the evaporator, (b) - taking into account; 1 – liquid plug 1, 2 – 2.

下载 (32KB)
8. Fig. 7. Contact angles of the liquid plug interface: (a) – static and dynamic angles; (b), (c) – dynamic contact angles for water and glycerin (high-speed camera photograph).

下载 (42KB)
9. Fig. 8. Geometric model.

下载 (22KB)
10. Fig. 9. Nodal model.

下载 (30KB)
11. Fig. 10. Geometric model of the calculated steam volume.

下载 (24KB)
12. Fig. 11. Scheme of the balance of forces in the liquid volume.

下载 (23KB)
13. Fig. 12. Thermodynamic cycles of a single steam bubble (a), upper (b) and lower (c) channels.

下载 (25KB)
14. Fig. 13. General scheme of a multi-pass PTT with closed (a) and open (b) sealed loops.

下载 (25KB)
15. Fig. 14. Scheme of thermal resistances in the mathematical model.

下载 (21KB)
16. Fig. 15. Movement of the liquid meniscus along the pipe and formation of a film; the intersection of the film and pipe surfaces corresponds to the coordinate x = 0.

下载 (14KB)
17. Fig. 16. Geometric models of the meniscus at different wall temperatures: (a) – at the steam saturation temperature Tsat, (b) – Tsat + ΔT.

下载 (12KB)
18. Fig. 17. General scheme of a single-pass PTT with a closed evaporator and an open condenser: L – liquid, P – steam.

下载 (15KB)
19. Fig. 18. Frequency distribution as a function of the parameters Nr and NA, calculated for Nd = 1 and Reω0 = 12: the black line is the minimum points of the Nr(ω) curve, calculated at NA = const.

下载 (18KB)
20. Fig. 19. Distribution of the evaporator wall temperature (1) and liquid (2) depending on time at an input power of 275 W.

下载 (17KB)
21. Fig. 20. Evolution of the temperature oscillation profile of the evaporator wall (1) and liquid (2) at an input power of 250 W in the horizontal (temperature increase) and lower vertical positions (temperature stabilization).

下载 (18KB)
22. Fig. 21. Contact angle between ethanol and aluminum surface: (a) – 9.1о, without water-repellent coating; (b) – 59.7о, with water- and oil-repellent coating (DS-5700).

下载 (6KB)
23. Fig. 22. Dependences of the pressure oscillation amplitude on the empty space coefficient during the operation of the PTT: (a) – Q = 70 W, (b) – 90, (c) – 110; upper row – with coating, lower – without coating.

下载 (24KB)
24. Fig. 23. Flight segments during the tests: (a) – distribution by altitude, (b) – by gravity level.

下载 (19KB)
25. Fig. 24. PTT for testing in micro- and hypergravity conditions.

下载 (35KB)
26. Fig. 25. Temperature distributions over time for PTT (acceleration at the parabola entrance is 1.5g, lower thermal position with an inclination angle of 4.2o, thermal power is 8.8 W, ambient temperature is from 20 to 21oC): (a) - with variable conductivity; (b) - with constant conductivity (valve between PTT and the reservoir); the curves correspond to the points in Fig. 24; G-signal is the input voltage of the signal during microgravity, 5 V.

下载 (32KB)
27. Fig. 26. The working section of the experimental setup: (a) - diagram, (b) - geometric model.

下载 (29KB)
28. Fig. 27. Cylindrical jet of liquid sprayed before impact with the wall: (a) - spraying into a two-phase flow with air, (b) - location of thermocouples on the cooling wall.

下载 (26KB)

版权所有 © Russian Academy of Sciences, 2025