Comparison of temperature and ultrasonic intensification of supercritical fluid extraction using parsnip seeds as an example

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A comparison of thermal and ultrasonic intensification of supercritical fluid extraction using wild parsnip seeds, a source of plant oil and furocoumarin photosensibilizers, was conducted. It was observed that, even at pressure as high as 300 bar temperature effect on parsnip extraction demonstrates a so-called retrograde behaviour, that is, isobaric temperature increase leads decrease in extraction speed and overall mas yield. A previously proposed idea on a chromatography-like mechanism of a supercritical fluid extraction process with multiple re-adsorption of the isolated components onto the plant material working as a sorbent allows explaining the observance of retrograde behaviour, uncommon for such high pressure values. The overall influence of ultrasonic intensification of extraction process was shown to be similar to that of temperature. At low extraction pressure (100 bar), when cavitation of a subcritical fluid entering the extraction zone is principally possible, ultrasonication leads to an increased extraction kinetic at the initial, linear part of the extraction curve. At high working pressure (300 bar), effect of ultrasonication is essentially equal to that of direct heating. Using supercritical fluid chromatography, Furocoumarin profiles of thermal and ultrasonic parsnip extracts were shown to be identical by means of supercritical fluid chromatography, thus, ultrasonication even at 100 bar does not cause any unwanted sonochemical effects.

全文:

受限制的访问

作者简介

I. Rostovshchikova

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: pokrovskiy@terraint.ru
俄罗斯联邦, Moscow

R. Nikonova

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: pokrovskiy@terraint.ru
俄罗斯联邦, Moscow

A. Kamler

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: pokrovskiy@terraint.ru
俄罗斯联邦, Moscow

D. Ovchinnikov

Northern (Arctic) Federal University named after M.V. Lomonosov

Email: pokrovskiy@terraint.ru

Center for Collective Use of Scientific Equipment “Arctic”

俄罗斯联邦, Arkhangelsk

D. Kosyakovb

Northern (Arctic) Federal University named after M.V. Lomonosov

Email: pokrovskiy@terraint.ru

Center for Collective Use of Scientific Equipment “Arctic”

俄罗斯联邦, Arkhangelsk

O. Pokrovskiia

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pokrovskiy@terraint.ru
俄罗斯联邦, Moscow

参考

  1. Жузе Т.П. Роль сжатых газов как растворителей. М.: Недра, 1981.
  2. McHugh M., Krukonis V. Supercritical fluid extraction. 2nd ed. Boston, MA: Butterworth-Heinemann, 1994.
  3. Martinez J.L. Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, 2007.
  4. Зильфикаров И.Н., Челомбитько В.А., Алиев А.М. Обработка лекарственного растительного сырья сжиженными газами и сверхкритическими флюидами. Пятигорск, 2007.
  5. Perrut M., Perrut V. Towards ingredients by combining Supercritical Fluids with other processes // J. Supercrit. Fluids. 2018. V. 134. P. 214.
  6. Illes V., Daood H.G., Biacs P.A., Gnayfeed M.H., Meszaros B. Supercritical CO2 and subcritical propane extraction of spice red pepper oil with special regard to carotenoid and tocopherol content // J. Chromatogr. Sci. 1999. V. 37. № 9. P. 345.
  7. Li Y., Obadi M., Qi Y., Shi J., Sun J., Chen Zh., Xu B. Extraction of at lipids and phospholipids using subcritical propane and dimethyl ether: experimental data and modeling // Eur. J. Lipid Sci. Technol. 2021. V. 123. № 1. P. 2000092.
  8. Ciulla M., Canale V., Wolicki R.D., Ferrone V., Carlucci G., Fontana A., Siani G., D’Alessandro N., Di Profi P. Comparison of extraction methods for active biomolecules using sub-critical dimethyl ether and n-butane // Eur. Food Res. Technol. 2023. V. 249. № 2. P. 367.
  9. Goto M., Kanda H., Wahyudiono, Machmudah S. Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether // J. Supercrit. Fluids. 2015. V. 96. P. 245.
  10. Горемыкина Н.В. Обоснование технологии и метода идентификации облепихового масла и товароведная оценка продуктов на его основе: Дисс. … канд. техн. наук. Бийск: Алтайский государственный технический университет им. И.И. Ползунова, 2016.
  11. Belo Y.N., Al-Hamimi S., Chimuka L., Turner Ch. Ultrahigh-pressure supercritical fluid extraction and chromatography of Moringa oleifera and Moringa peregrina seed lipids // Anal. Bioanal. Chem. 2019. V. 411. № 16. P. 3685.
  12. Amador-Luna V.M., Herrero M., Dominguez-Rodriguez G., Ibanez E., Montero L. Enhancing the bioactivity of Dunaliella salina extracts through ultra-high pressure supercritical fluid extraction (UHP-SFE) // Inn. Food Sci. Emerg. Technol. 2024. V. 95. P. 103697.
  13. Chimowitz E.H., Kelley F.D., Munoz F.M. Analysis of retrograde behavior and the cross-over effect in supercritical fluids // Fluid Phase Equil. 1988. V. 44. № 1. P. 23.
  14. Kalikin N.N., Oparin R.D., Kolesnikov A.L., Budkov Yu.A., Kiselev M.G. A crossover of the solid substances solubility in supercritical fluids: what is it in fact? // J. Mol. Liq. 2021. V. 334. P. 115997.
  15. Budkov Yu.A., Kolesnikov A.L., Ivlev D.V., Kalikin N.N., Kiselev M.G. Possibility of pressure crossover prediction by classical DFT for sparingly dissolved compounds in scCO2 // J. Mol. Liq. 2019. V. 276. P. 801.
  16. Chemat F., Abert Vian M., Fabiano-Tixier A.-S., Nutrizio M., Režek Jambrak A., Munekata P.E.S., Lorenzo J.M., Barba F.J., Binello A., Cravotto G. A review of sustainable and intensified techniques for extraction of food and natural products // Green Chem. 2020. V. 22. № 8. P. 2325.
  17. Chemat A., Song M., Li. Y., Fabiano-Tixier A.-S. Shade of innovative food processing techniques: potential inducing factors of lipid oxidation // Molecules. 2023. V. 28. № 24. P. 8138.
  18. Dassoff E.S., Li Y.O. Mechanisms and effects of ultrasound-assisted supercritical CO2 extraction // Trends Food Sci. Technol. 2019. V. 86. P. 492.
  19. Dias A.L.B., de Aguiar A.C., Rostagno M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: current status and trends // Ultrasonics Sonochemistry. 2021. V. 74. P. 105584.
  20. Park I.-B., Son Y., Song I.-S., Na K.-H., Kim J., Khim J. Extraction of metal species from contaminated soils utilizing supercritical CO2 and ultrasound // Jpn. J. Appl. Phys. 2009. V. 48. № 7. P. 07GM17.
  21. Castelo-Grande T., Augusto P.A., Estevez A.M., Barbose D. Application of ultrasound-assisted supercritical extraction to soil remediation // Chem. Eng. Technol. 2017. V. 40. № 4. P. 691.
  22. Kuijpers M.W.A., van Eck D., Kemmere M.F., Keurentjes J.T.F. Cavitation-induced reactions in high-pressure carbon dioxide // Science. 2002. V. 298. № 5600. P. 1969.
  23. Kemmere M., Kuijpers M., Jacobs L., Keurentjes J. Ultrasound-induced polymerization of methyl methacrylate in liquid carbon dioxide: a clean and safe route to produce polymers with controlled molecular weight // Macromol. Symp. 2004. V. 206. № 1. P. 321.
  24. Castillo-Zamudio R.I., Paniagua-Martinez I., Ortuno-Cases C., Garcia-Alvarado M.A., Larrea V., Benedito J. Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham // Inn. Food Sci. Emerg. Technol. 2021. V. 67. P. 102557.
  25. Abramova A., Abramov V., Bayazitov V., Nikonov R., Fedulov I., Stevanato L., Cravotto G. Ultrasound-assisted cold pasteurization in liquid or SC-CO2 // Processes. 2021. V. 9. № 8. P. 1457.
  26. Paniagua-Martínez I., Mulet. A., Garcia-Alvarado M.A., Benedito J. Ultrasound-assisted supercritical CO2 treatment in continuous regime: Application in Saccharomyces cerevisiae inactivation // J. Food Eng. 2016. V. 181. P. 42.
  27. Голубкина Н.А., Сокуренко М.А., Степанов В.А., Заячковский В.А., Кошелева О.В., Молчанова А.В., Бекетова Л.В., Ковальский Ю.Г., Солдатенко А.В. Функциональный продукт питания на основе переработки пастернака с высоким содержанием моносахаров и антиоксидантов. Патент РФ 2734122 от 13.11.2018.
  28. Kenari H.M., Kordafshari Gh., Moghimi M., Eghbalian F., Taherkhani D. Review of pharmacological properties and chemical constituents of Pastinaca sativa // J. Pharmacopunct. 2021. Vol. 24. № 1. P. 14.
  29. Голубкина Н.А., Федорова М.И., Киселева Т.В., Викторова Е.В. Жирнокислотный состав масла семян пастернака Pastinaca sativa L. // Масложир. пром. 2009. № 5. С. 39.
  30. Zangerl A.R., Green E.S., Lampman R.L., Berenbaum M.R. Phenological changes in primary and secondary chemistry of reproductive parts in wild parsnip // Phytochem. 1997. V. 44. № 5. P. 825.
  31. Berenbaum M.R. Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.) // Oecologia. 1981. V. 49. № 2. P. 236.
  32. Ekiert H., Gomółka E. Furanocoumarins in Pastinaca sativa L. in vitro culture // Pharmazie. 2000. V. 55. № 8. P. 618.
  33. Kviesis J., Klimenkovs I., Arbidans L., Podjaca A., Klavins M., Liepins E. Evaluation of furanocoumarins from seeds of the wild parsnip (Pastinaca sativa L. s.l.) // J. Chromatogr. B. 2019. V. 1105. P. 54.
  34. Waksmundzka-Hajnos M., Petruczynik A., Dragan A., Wianowska D., Dawidowicz A.L., Sowa I. Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits // J. Chromatogr. B. 2004. V. 800. № 1. P. 181.
  35. Потапенко А.Я. Псоралены и медицина – 4000-летний опыт фотохимиотерапии // Сорос. образ. журн. 2000. V. 6. № 11. P. 22.
  36. Pathak M.A., Fitzpatrick T.B. The evolution of photochemotherapy with psoralens and UVA (PUVA): 2000 BC to 1992 AD // J. Photochem. Photobiol. B: Biol. 1992. V. 14. № 1. P. 3.
  37. Sovová H., Sajfrtová M., Stateva R.P. A novel model for multicomponent supercritical fluid extraction and its application to Ruta graveolens // J. Supercrit. Fluids. 2017. V. 120. P. 102.
  38. Scopel J.M., Medeiros-Neves B., H. Ferrera Teixiera, Brazil N.T., Bordignon S.A.L., Mendonca Diz F., Bueno Morrone F., Almeida R.N., Cassel E., von Poser G.L., Vargas R.M.F. Supercritical carbon dioxide extraction of coumarins from the aerial parts of Pterocaulon polystachyum // Molecules. 2024. V. 29. № 12. P. 2741.
  39. Woźniak Ł., Połaska M., Marszałek, Skapska S. Photosensitizing furocoumarins: content in plant matrices and kinetics of supercritical carbon dioxide extraction // Molecules. 2020. V. 25. № 17. P. 3805.
  40. Pokrovskiy O.I., Markoliya A.A., Lepeshkin F.D., Kuvykin I.V., O.O. Parenago, Gonchukov S.A. Extraction of linear furocoumarins from Ammi majus seeds by means of supercritical fluid extraction and supercritical fluid chromatography // Russ. J. Phys. Chem. B. 2009. V. 3. № 8. P. 1165. [Покровский О.И., Марколия А.А., Лепешкин Ф.Д., Кувыкин И.В., Паренаго О.О., Гончуков С.А. Выделение линейных фурокумаринов из семян Ammi Majus с помощью сверхкритической флюидной экстракции и сверхкритической флюидной хроматографии // Сверхкритические флюиды: теория и практика. 2009. Т. 4. № 4. С. 61.]
  41. Gupta R.B., Shim J.-J. Solubility in supercritical carbon dioxide. Boca Raton: CRC Press, 2007. 909 p.
  42. Технология и стандартизация лекарств / Под ред. Георгиевского В.П., Конева Ф.А. Т. 1. Харьков: ООО “Рирег”, 1996.
  43. Касьянов Г.И., Таран А.А., Пехов А.В. Натуральные пищевые ароматизаторы – CO2-экстракты. М.: Пищевая промышленность, 1978.
  44. Pokrovskiy O., Rostovschikova I., Ustinovich K., Voronov I., Kosyakov D. Chromatography-like propagation of water along raw material bed in supercritical fluid extraction // J. Chromatogr. A. 2024. V. 1713. P. 464502.
  45. Prokopchuk D., Pokrovskiy O. On the enhanced accuracy of kinetic curve building in supercritical fluid extraction from aroma plants using a new 3D-printed extract collection device // Molecules. 2020. V. 25. № 9. P. 2008.
  46. Hatami T., Cesar Flores Johner J., Kurdian A.R., Meireles M.A.A. A step-by-step finite element method for solving the external mass transfer control model of the supercritical fluid extraction process: A case study of extraction from fennel // J. Supercrit. Fluids. 2020. V. 160. P. 104797.
  47. Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O. Thermophysical properties of fluid systems // Eds. P.J. Lindstrom, W.G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database. Gaithersburg MD: NIST. P. 20899.
  48. Desmortreux C., Rothaupt M., West C., Lesellier E. Improved separation of furocoumarins of essential oils by supercritical fluid chromatography // J. Chromatogr. A. 2009. V. 1216. № 42. P. 7088.
  49. Pfeifer I., Murauer A., Ganzera M. Determination of coumarins in the roots of Angelica dahurica by supercritical fluid chromatography // J. Pharm. Biomed. Analysis. 2016. V. 129. P. 246.
  50. Pokrovskii O.I., Krutikova A.A., Ustinovich K.B., Parenago O.O., Moshnin M.V., Gonchukov S.A., Lunin V.V. Preparative separation of methoxy derivatives of psoralen using supercritical-fluid chromatography // Russ. J. Phys. Chem. B. 2013. V. 7, № 8. P. 901–915. [Покровский О.И., Крутикова А.А., Устинович К.Б., Паренаго О.О., Мошнин М.В., Гончуков С.А., Лунин В.В. Препаративное разделение метоксипроизводных псоралена с помощью сверхкритической флюидной хроматографии // Сверхкритические флюиды: теория и практика. 2013. Т. 8. № 1. С. 14.]
  51. Testa Camillo M.R., Russo M., Trozzi A., Mondello L., Dugo P. Quantification of coumarins, furocoumarins and polymethoxyflavones in hydroalcoholic fragrances by supercritical fluid chromatography-tandem mass spectrometry // J. Ess. Oil Res. 2023. V. 35. № 5. P. 461.
  52. Pokrovskiy O.I., Rostovschikova I.N., Ustinovich K.B. Effect of supercritical carbon dioxide compression heating in both stationary and flow regimes // Theor. Found. Chem. Eng. 2024. V. 58. P. 450. [Покровский О.И., Ростовщикова И.Н., Устинович К.Б. Эффект компрессионного разогрева сверхкритического диоксида углерода в стационарном и проточном режимах // Хим. технология. 2023. Т. 24. № 12. С. 470.]
  53. Carvalho P.I.N., Osorio-Tobon J.F., Zabot G.L., Meireles M.A.A. Spatial and temporal temperature distributions in fixed beds undergoing supercritical fluid extraction // Inn. Food Sci. Emerg. Technol. 2018. V. 47. P. 504.
  54. Sovová H., Nobre B.P., Palavra A. Modeling of the kinetics of supercritical fluid extraction of lipids from microalgae with emphasis on extract desorption // Materials. 2016. V. 9. № 6. P. 423.
  55. Prausnitz J.M., Lichtenthaler R.N., de Azevedo E.G. Molecular thermodynamics of fluid-phase equilibria. 3rd ed. Upper Saddle River, N.J: Prentice Hall PTR, 1999.
  56. Chrastil J. Solubility of solids and liquids in supercritical gases // J. Phys. Chem. 1982. V. 86. № 15. P. 3016.
  57. Chen C.-C., Chang C.J., Yang P. Vapor-liquid equilibria of carbon dioxide with linoleic acid, α-tocopherol and triolein at elevated pressures // Fluid Phase Equil. 2000. V. 175, № 1–2. P. 107.
  58. Nilsson W.B., Gauglitz E.J., Hudson J.K. Solubilities of methyl oleate, oleic acid, oleyl glycerols, and oleyl glycerol mixtures in supercritical carbon dioxide // J. Am. Oil Chem. Soc. 1991. V. 68. № 2. P. 87.
  59. Weber W., Petkov S., Brunner G. Vapour-liquid-equilibria and calculations using the Redlich–Kwong-Aspen-equation of state for tristearin, tripalmitin, and triolein in CO2 and propane // Fluid Phase Equil. 1999. V. 158–160. P. 695.
  60. Ilieva P., Kilzer A., Weidner E. Measurement of solubility, viscosity, density and interfacial tension of the systems tristearin and CO2 and rapeseed oil and CO2 // J. Supercrit. Fluids. 2016. V. 117. P. 40.
  61. Pokrovskiy O., Rostovschikova I., Usovich O., Ustinovich K. Fluid revisited: An overlook of a method for solubility measurements in supercritical fluids based on chromatography retention // J. Mol. Liq. 2024. V. 400. P. 124466.
  62. Pokrovskiy O., Rostovschikova I. On the discrepancy between crossovers of solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography // J. Chromatogr. A. 2024. V. 1732. P. 465210.
  63. Kitamura N., Kohtani S., Nakagaki R. Molecular aspects of furocoumarin reactions: Photophysics, photochemistry, photobiology, and structural analysis // J. Photochem. Photobiol. C: Photochem. Rev. 2005. V. 6. № 2. P. 168.
  64. Berenbaum M.R., Zangerl A.R., Nitao J.K. Furanocoumarins in seeds of wild and cultivated parsnip // Phytochem. 1984. V. 23. № 8. P. 1809.
  65. Span R., Wagner W. A New equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa // J. Phys. Chem. Ref. Data. 2009. V. 25. № 6. P. 1509.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of extraction yield (η, %) on the hydromodulus (S/F) at a pressure of 100 bar: 1 – T = room; 2 – T = 50ºС; 3 – W(US) ≈ 70 W; 4 – T = 100ºС. Solid line – without ultrasound exposure, dotted line – with ultrasound.

下载 (112KB)
3. Fig. 2. Dependence of the extraction yield (η, %) on the hydromodulus (S/F) at a pressure of 300 bar: 1 – T = 50ºС; 2 – T = room; 3 – W(US) ≈ 50 W; 4 – W(US) ≈ 80 W; 5 – T = 100ºС. Solid line – without ultrasound exposure, dotted line – with ultrasound.

下载 (120KB)
4. Fig. 3. Dependence of CO2 density (ρ, g/ml) on temperature (T, ºC) at different pressure values: 1 – 300 bar; 2 – 100 bar. NIST data [47], calculated using the Span-Wagner equation of state [65].

下载 (94KB)
5. Fig. 4. SCF chromatogram of the CO2 extract fraction of parsnip. (a) – extraction with temperature intensification at a temperature of 100ºC, (b) – extraction with ultrasound intensification at an average power of 70 W. 1 – imperatorin, 2 – xanthotoxin, 3 – isopimpinellin, 4 – bergapten.

下载 (165KB)

版权所有 © Russian Academy of Sciences, 2025