Slidingan analysis of analytical signal of non-contact photoplethysmography for assessing heart rate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper proposes a method for studying the variability of the subject’s heart rate based on the intellectual analysis of the pulse wave measured with remote photoplethysmography. The logically related stages of the formation of quadrature components based on the Hilbert transform of biomedical signals’ dynamics are presented. Within the framework of modern methods of intellectual analysis of non-stationary time series, realizations of adaptive estimates of instantaneous frequencies and periods of the heartbeat basic tone are obtained.

Full Text

Restricted Access

About the authors

L. V. Labunets

Bauman Moscow State Technical University; Российский новый университет

Author for correspondence.
Email: labunets@bmstu.ru
Russian Federation, 2-ya Baumanskaya st., 5, Moscow, 105005; Radio st., 22, Moscow, 105005

D. S. Lukin

Российский новый университет

Email: labunets@bmstu.ru
Russian Federation, Radio st., 22, Moscow, 105005

M. Y. Ryakhina

Bauman Moscow State Technical University

Email: labunets@bmstu.ru
Russian Federation, 2-ya Baumanskaya st., 5, Moscow, 105005

References

  1. Greenes R.A. Clinical Decision Support. The Road to Broad Adoption. 2nd ed. Amsterdam, Boston: Elsevier Acad. Press, 2014.
  2. Pandey S.C. // Intern.Conf. on Signal Processing, Communication, Power and Embedded System (SCOPES2016). Paralakhemundi, Odisha, India. 2016. 3–5 October. P. 972.
  3. Баранов А.А., Намазова-Баранова Л.С., Смирнов И.В. и др.// Вестник РАМН. 2016. Т. 71. № 2. С. 160. https://doi.org/10.15690/vramn663
  4. Реброва О.Ю. // Клиническая и экспериментальная тиреодология. 2019. Т. 15. № 4.С. 148. https://doi.org/10.14341/ket12377
  5. Sutton R.T., Pincock D., Baumgart D.C. et al. // Digital Medicine. 2020. V. 17. № 3. P. 2. https://doi.org/10.1038/s41746-020-0221-y
  6. Giordano C., Brennan M., Mohamed B. et al. // Frontiers in Digital Health. 2021. V. 3. № 6. P. 1. https://doi.org/10.3389/fdgth.2021.645232
  7. Akishin A.D., Nikolaev A.P., Pisareva A.V. // J. Phys.: Conf. Ser. 2021. V. 2096. № 1. P. 012187.
  8. Омпоков В.Д. Частотно-временной анализ пульсовых сигналов с помощью преобразования Гильберта-Хуанга.Дисс. канд. физ.-мат. наук. Улан-Уде: Ин-т физ. материаловедения СО РАН. 2019. 106 с.
  9. Анищенко Л.Н., Лобанова В.С., Давыдова И.А. и др. // Биомед. радиоэлектроника. 2021. Т. 24. № 5. С. 47. https://doi.org/10.18127/j15604136–202105–06
  10. Borzov A., Kasikin A., Labunets L., Ryakhina M. // Proc. Intern. Sci. Practical Conf. “Information Technologies and Intelligent Decision Making Systems” (ITIDMS2021). CEUR Workshop Proc. 2021. http://ceur-ws.org/Vol-2843
  11. Labunets L.V., Borzov A.B., Makarova N.Yu. // J. Commun. Technol. Electron. 2022. V. 67. № 2. P. 182. https://doi.org/10.1134/S1064226922020097
  12. Labunets L.V., Ryakhina M.Yu. // Biomedical Engineering. 2023. V. 57. № 4. P. 265. https://doi.org/10.1007/s10527-023-10312-9
  13. Unakafov A.M. // Biomed. Phys. Engineering Express. 2018. № 4. Р. 045001. https://doi.org/10.1088/2057-1976/aabd09
  14. Wang W., den Brinker A.C., Stuijk S., de Haan G. // IEEE Trans. 2016. V. BE-64. № 7. Р. 1479. https://doi.org/10.1109/TBME.2016.2609282
  15. Hoffman W.F.C., Lakens D. Public Benchmark Dataset for Testing rPPG Algorithm Performance. 4TU.Centre for Research Data.Dataset. https://doi.org/10.4121/uuid:2ac74fbd-2276-44ad-aff1-2f68972b7b51
  16. Thomson D.J. // Proc. IEEE. 1982. V. 70. № 9. P. 1055.
  17. Zhongzhe Ch., Baqiao L., Xiaogang Y., Hongquan Y. // Energies. 2019. V. 12. https://doi.org/10.3390/en12163077
  18. Golyandina N., Nekrutkin V., Zhigljavsky A. Analysis of Time Series Structure: SSA and Related Techniques. New York: Chapman and Hall/CRC. 2001.
  19. Zeiler A., Faltermeier R., Tom´e A. et al. // Neural Proc. Lett. 2013. V. 37. № 1. P. 21.
  20. Fontugne R., Borgnat P., Flandrin P. // Proc. IEEE Intern. Conf. Acoustics, Speech and Signal Processing (ICASSP). New Orleans, USA. 2017. P. 4306.
  21. Германович О., Лиференко В., Лебедев С. // Компоненты и технологии. 2012. № 2. С. 122.
  22. Marple S.L., Jr. // IEEE Trans. 1999. V. SP-47. № 9. P. 2600. https://doi.org/10.1109/78.782222
  23. Forsythe G.E., Malcolm M.A., Moler C.B. Computer Methods for Mathematical Computations. Englewood Cliffs: Prentice-Hall, 1977.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SPM dependences on the ns segment number for two examples of waves: P1H1 (a) and P1M3 with artifacts (b) and without artifacts (c).

Download (901KB)
3. Fig. 2. Cluster structure of the matrix W of offset segments w(n): fragments for P1H1 (a) and P1M3 (b).

Download (198KB)
4. Fig. 3. Dynamics of the estimation f1(t) of the instantaneous heart rate for P1H1 (a) and P1M3(b): noisy BP (curve 1), as well as its quasi-cyclical (2) and trend (3) components.

Download (179KB)
5. Fig. 4. Dynamics of the estimation f2(t) of the instantaneous fundamental heart rate for P1H1 (a) and P1M3(b): noisy BP (curve 1), as well as its quasi- cyclic (2) and trend (3) components.

Download (142KB)
6. Fig. 5. Dynamics of the f3(t) estimate of the instantaneous heart rate for P1H1: TFG (a): noisy BP (curve 1), quasi-cyclical (2) and trend(3) components of the f3(t) estimate (b).

Download (205KB)
7. Figure 6. Dynamics of the f4(t) estimate of the instantaneous heart rate for P1H1(a) and P1M3(b): noisy BP (curve 1), as well as its quasi-cyclical (2) and trend (3) components.

Download (141KB)
8. 7. Dynamics of the f5(t) estimate of the instantaneous heart rate for P1H1 (a) and P1M3(b): noisy BP (curve 1), as well as its quasi-cyclical (2) and trend (3) components.

Download (143KB)
9. Figure 8. Comparative analysis of HR estimates for P1H1 (a) and P1M3 (b): trend component BP f1(n) of instantaneous frequencies (1), as well as trend (2) and Bollinger band boundaries (3) obtained by electrocardiography.

Download (154KB)

Copyright (c) 2024 Russian Academy of Sciences