Preparation of nanodiamond conjugates with scandium isotopes for use in nuclear medicine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, we studied the sorption of scandium, whose isotopes 44Sc and 47Sc are studied for diagnostics and therapy in nuclear medicine, by aggregates of commercial (TAN, STP) and oxidized ND nanodiamonds (ox-STP) from aqueous solutions. The sorption capacity of the studied NDs for scandium was determined; it was shown that 100 μg of NDs is sufficient for the sorption of 1 GBq of 47Sc, which is equivalent to the activity of isotopes used in therapy. It has been shown that the supposed mechanism for the binding of Sc(III) to ND aggregates is chemisorption, and the chemical composition of the ND surface affects the sorption efficiency to a greater extent than the forms of scandium in solution. The obtained data on Sc(III) sorption are compared with the sizes of ND aggregates; it is shown that sorption under experimental conditions does not depend on the size of the aggregates. Optimal carriers of the 47Sc isotope have been found for further studies of radiopharmaceuticals based on it – TAN and ox-STP.

Texto integral

Acesso é fechado

Sobre autores

A. Kazakov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: adeptak92@mail.ru
Rússia, Moscow

T. Ekatova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: adeptak92@mail.ru
Rússia, Moscow

S. Vinokurov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: adeptak92@mail.ru
Rússia, Moscow

E. Khvorostinin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: adeptak92@mail.ru
Rússia, Moscow

I. Ushakov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Rússia, Tomsk

V. Zukau

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Rússia, Tomsk

E. Stasyuk

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Rússia, Tomsk

E. Nesterov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Rússia, Tomsk

V. Sadkin

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Rússia, Tomsk

A. Rogov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Rússia, Tomsk

B. Myasoedov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Interdepartmental Center for Analytical Research in Physics, Chemistry and Biology, Russian Academy of Sciences

Email: adeptak92@mail.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Phua V.J.X., Yang C.-T., Xia B., Yan S.X., Liu J., Aw S.E. et al. // Nanomaterials. 2022. Vol. 12. N 4. Article 582.
  2. Islam W., Niidome T., Sawa T. // JPM. 2022. Vol. 12. N 12. Article 1964.
  3. Peltek O.O., Muslimov A.R., Zyuzin M.V., Timin A.S. // J Nanobiotechnol. 2019. Vol. 17. N. 1. P. 90.
  4. Xu J., Chow E.K.-H. // SLAS Technol. 2023. Vol. 28. N. 4. P. 214–222.
  5. Turcheniuk K., Mochalin V.N. // Nanotechnology. 2017. Vol. 28. N 25. Article 252001.
  6. Ali M.S., Metwally A.A., Fahmy R.H., Osman R. // Carbohydr. Polym. 2020. Vol. 245. Article 116528.
  7. Cui J., Zhao W., Wu J., Zhang D., Liu L., Qiao H. et al. // J. Drug Deliv. Sci. Technol. 2023. Vol. 88. Article 104984.
  8. Казаков А.Г., Гаращенко Б.Л., Яковлев Р.Ю., Винокуров С.Е., Калмыков С.Н., Мясоедов Б.Ф. // Радиохимия. 2020. T. 62. № 5. C. 394–399.
  9. Казаков А.Г., Гаращенко Б.Л., Бабеня Ю.С., Иванова М.К., Винокуров С.Е., Мясоедов Б.Ф. // Вопр. радиац. безопасности. 2020. T. 3. C. 73–83.
  10. Казаков А.Г., Гаращенко Б.Л., Яковлев Р.Ю., Винокуров С.Е., Мясоедов Б.Ф. // Радиохимия. 2020. T. 62. № 6. C. 519–525.
  11. Babenya J.S., Kazakov A.G., Ekatova T.Y., Yakovlev R.Y. // J. Radioanal. Nucl. Chem. 2021. Vol. 329. N 2. P. 1027–1031.
  12. Winter G., Eberhardt N., Löffler J., Raabe M., Alam M.N.A., Hao L. et al. // Nanomaterials. 2022. Vol. 12. N 24. Article 4471.
  13. Müller C., Domnanich K.A., Umbricht C.A., van der Meulen N.P. // Br. J. Radiol. 2018. Vol. 91. Article 20180074.
  14. Blower P.J. // Dalton Trans. 2015. Vol. 44. P. 4819–4844.
  15. Müller C., Bunka M., Haller S., Köster U., Groehn V., Bernhardt P. et al. // J. Nucl. Med. 2014. Vol. 55. P. 1658–1664.
  16. Kazakov A.G., Babenya J.S., Ekatova T.Y., Vinokurov S. E., Myasoedov B.F. // Advances in Geochemistry, Analytical Chemistry and Planetary Sciences. 2023. P. 595–601.
  17. Yakovlev R.Y., Dogadkin N.N., Kulakova I.I., Lisichkin G.V., Leonidov N.B., Kolotov V.P. // Diam. Relat. Mater. 2015. Vol. 55. P. 77–86.
  18. Karpukhin A.V., Avkhacheva N.V., Yakovlev R.Y., Kulakova I.I., Yashin V.A., Lisichkin G.V., Safronova V.G. // Cell. Biol. Int. 2011. Vol. 35. N 7. P. 727–733.
  19. Dolmatov V.Y., Rudenko D.V., Burkat G.K., Aleksandrova A.S., Vul’ A.Yu., Aleksenskii A.E. et al. // J. Superhard Mater. 2019. Vol. 41. N 3. P. 169–177.
  20. Казаков А.Г., Бабеня Ю.С., Екатова Т.Ю., Винокуров С.Е., Хворостинин Е.Ю., Ушаков И.А., Зукау В.В., Стасюк Е.С., Нестеров Е.А., Садкин В.Л., Рогов А.С., Мясоедов Б.Ф. // Радиохимия. 2024. Т. 66. № 2. С. ??? (рег. номер 10138.)
  21. Verweij W. // CHEAQS Next Ver. 0.2.1.10. https://www.cheaqs.eu/
  22. Buchatskaya Y., Romanchuk A., Yakovlev R., Shiryaev A., Kulakova I., Kalmykov S. // Radiochim. Acta. 2015. Vol. 103. N 3. P. 205–211.
  23. Zhukov A.N., Shvidchenko A.V., Yudina E.B. // Colloid J. 2020. Vol. 82. N 4. P. 369–375.
  24. Shvidchenko A.V., Zhukov A.N., Dideikin A.T., Baidakova M.V., Shestakov M.S., Shnitov V.V., Vul’ A.Y. // Colloid J. 2016. Vol. 78. N 2. P. 235–241.
  25. Inagaki M., Sekimoto S., Tanaka W., Tadokoro Т., Ueno Y., Kani Y., Tsutomu O. // J. Radioanal. Nucl. Chem. 2019. Vol. 322. P. 1703–1709.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Kinetics of Sc(III) sorption by TAN (a), STP (b) and ox-STP (c) aggregates (20 ng/ml Sc, 100 μg/ml NA).

Baixar (247KB)
3. Fig. 2. Forms of Sc(III) in aqueous solutions of HCl and NaOH at 20 ng/ml Sc(III), according to calculations [21].

Baixar (138KB)
4. Fig. 3. Comparison of the degree of Sc(III) sorption obtained in this work with the sizes of TAN (a), STP (b) and ox-STP (c) aggregates [20].

Baixar (243KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024