The influence of uranyl nitrate on exothermic processes in nitric acid solutions of reducing agents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The thermal stability of nitric acid solutions of acetohydroxamic acid, carbohydrazide, hydrazine nitrate, and their mixtures was studied. The onset temperature of the exothermic reaction was determined, and the thermal effects of the reactions were calculated. The influence of uranyl nitrate on the thermal stability of reducing agents and their mixtures was studied. Comparison of the characteristics of exothermic processes in solutions with and without uranyl nitrate showed that the introduction of uranyl nitrate reduced the intensity of exothermic processes in all the nitric acid solutions studied.

Full Text

Restricted Access

About the authors

A. S. Ob”edkov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: bl174@bk.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

A. N. Grishaev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: bl174@bk.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

E. V. Belova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: bl174@bk.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

References

  1. Marchenko V.I., Alekseenko V.N., Dvoeglazov K.N. // Radiochemistry. 2015. Vol. 57. N 4. P. 366.
  2. Nazin E.R., Zachinyaev G.M., Belova E.V., Emel’yanov A.S., Myasoedov B.F. // Radiochemistry. 2019. Vol. 61. N 6. P. 671.
  3. Melent’ev A.B., Mashkin A.N., Tugarina O.V., Kolupaev D.N., Zilberman B.Ya., Tananaev I.G. // Radiochemistry. 2011. Vol. 53. N 3. P. 256.
  4. Марченко В.И., Двоеглазов К.Н. // Радиохимия. 2019. Т. 61. N 4. С. 320.
  5. Волк В.И., Двоеглазов К.Н., Алексеенко В.Н., Алексеенко С.Н., Кривицкий Ю.Г. Патент RU 2514947 C2. 2012.
  6. Егоров Г.Ф., Белова Е.В., Тхоржницкий Г.П., Смирнов А.В., Тананаев И.Г. // Вопр. радиац. безопасности. 2010. № 4. С. 22.
  7. Марченко В.И., Двоеглазов К.Н. // Радиохимия. 2020. Т. 62. № 3. С. 202.
  8. Tkac P., Precek M., Paulenova A. // Proc. Global 2009. Paris, France, Sept. 9, 2009. Paper 9122.
  9. Alekseenko V.N., Volk V.I., Marchenko V.I., Dvoeglazov K.N., Bychkov S.I., Bondin V.V. // Radiochemistry. 2012. Vol. 54. N 2. P. 149.
  10. Chung D.Y., Lee E.H. // J. Ind. Eng. Chem. 2006. Vol. 12. N 6. P. 962.
  11. Chung D.Y., Lee E.H. // J. Alloys Compd. 2008. Vol. 451. N 1–2. P. 440.
  12. Volk V.I., Marchenko V.I., Dvoeglazov K.N., Alekseenko V.N., Bychkov S.I., Pavlyukevich E.Yu. et al. // Radiochemistry. 2012. Vol. 54. N 2. P. 143.
  13. Zhang M., Hou X., Qiao J., Yang H. // 17th Radiochemical Conf. Mariánské Lázně, Czech Republic, May 11–16, 2014. P. 97.
  14. Zavalina O.A., Dvoeglazov K.N., Pavlyukevich E.Yu., Stepanov S.I. // Radiochemistry. 2017. Vol. 59. N 5. P. 453.
  15. Емельянов А.С., Родин А.В., Зачиняев Г.М. // Ядерн. и радиац. безопасность. 2021. Т. 100. № 2. С. 7.
  16. Nazin E.R., Zachinyaev G.M., Belova E.V., Emel’yanov A.S., Myasoedov B.F. // Radiochemistry. 2019. Vol. 61. N 6. P. 671.
  17. Nazin E.R., Belova E.V. // Prog. Nucl. Energy. 2022. Vol. 149. ID 104254.
  18. Назин Е.Р., Зачиняев Г.М. Пожаровзрывобезопасность технологических процессов радиохимических производств. М.: НТЦ ЯРБ, 2009. 195 c.
  19. Significant Incidents in Nuclear Fuel Cycle Facilities: IAEA-TECDOC-867. Vienna: IAEA, 1996.
  20. Usachev V.N., Markov G.S. // Radiochemistry. 2003. Vol. 45. N 1. P. 1.
  21. Obedkov A.S., Kalistratova V.V., Skvortsov I.V., Belova E.V. // Nucl. Eng. Technol. 2022. Vol. 54. N 9. P. 3580.
  22. Izato Y., Shiota K., Miyake A. // J. Phys. Chem. A. 2022. Vol. 126. N 19. P. 2998.
  23. Reed E.J., Rodriguez A.W., Manaa M.R., Fried L.E., Tarver C.M. // Phys. Rev. Lett. 2012. Vol. 109. N 3. ID 038301.
  24. Хмельницкий Л.И. Справочник по взрывчатым веществам. М.: Военная Артиллерийская инженерная акад. им. Ф.Э. Дзержинского, 1962. Ч. II.
  25. Kulyako Yu.M., Perevalov S.A., Trofimov T.I., Malikov D.A., Samsonov M.D., Vinokurov S.E. et al. // Radiochemistry. 2013. Vol. 55. N 6. P. 567.
  26. Obedkov A.S., Kalistratova V.V., Smirnov A.V., Belova E.V. // Prog. Nucl. Energy. 2024. Vol. 168. ID 105044.
  27. Gowland R., Stedman G. // J. Inorg. Nucl. Chem. 1981. Vol. 43. N 11. Р. 2859.
  28. Tkac P., Paulenova A., Gable K.P. // Appl. Spectrosc. 2007. Vol. 61. N 7. P. 772.
  29. Leshok D.Y., Alekseenko V.N., Gavrilov P.M., Alekseenko S.N., Dyachenko A.S., Samoilo A.A. et al. // Radiochim. Acta. 2015. Vol. 103. N 7. P. 477.
  30. Fischer N., Klapötke T.M., Stierstorfer J. // Propell. Explos. Pyrotech. 2011. Vol. 36. N 3. P. 225.
  31. Mohr E.B., Brezinski J.J., Audrieth L.F., Ritchey H.E., McFarlin R.F. // Inorg. Synth. 1953. Vol. 4. P. 32.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (564KB)
3. Fig. 1. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – GN, 2 – GN with UN

Download (90KB)
4. Fig. 2. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – AGC, 2 – AGC with UN

Download (67KB)
5. Fig. 3. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – AGC with GN, 2 – AGC with GN and UN

Download (66KB)
6. Fig. 4. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – KG, 2 – KG with UN

Download (118KB)
7. Fig. 5. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – KG with GN, 2 – KG with GN and UN

Download (103KB)

Copyright (c) 2025 Russian Academy of Sciences