Reaction of nitrate ion with formic acid in the presence of uranium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The reaction of nitric acid with formic acid, including uranium-containing solutions, was studied. Empirical equations for the dependence of the induction period duration (τ) on the concentrations of reagents and temperature were determined. The dependence of τ on the concentration of formic acid is exponential. The effect of uranium concentration on τ in denitrated solutions becomes noticeable only at temperatures lower than 60°C. The main factor affecting the completeness of denitration is the molar ratio [formic acid] : [NO3]¯. Starting with the molar ratio of ≥3, uranium-containing solutions are denitrated at 90°C in an hour almost quantitatively. The resulting uranyl formate is partially precipitated. The initial stage of the reaction is accompanied by violent gas evolution. At 90°C, ~80% of the gas volume is released at this stage (about 10 s), whereas at 40°C, only ~10%.

The reaction of nitric acid with formic acid, including uranium-containing solutions, was studied. Empirical equations for the dependence of the induction period duration (τ) on the concentrations of reagents and temperature were determined. The dependence of τ on the concentration of formic acid is exponential. The effect of uranium concentration on τ in denitrated solutions becomes noticeable only at temperatures lower than 60°C. The main factor affecting the completeness of denitration is the molar ratio [formic acid] : [NO3]¯. Starting with the molar ratio of ≥3, uranium-containing solutions are denitrated at 90°C in an hour almost quantitatively. The resulting uranyl formate is partially precipitated. The initial stage of the reaction is accompanied by violent gas evolution. At 90°C, ~80% of the gas volume is released at this stage (about 10 s), whereas at 40°C, only ~10%.

Full Text

Restricted Access

About the authors

L. V. Krasnikov

Khlopin Radium Institute

Author for correspondence.
Email: lkrasnikov@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021

A. A. Lumpov

Khlopin Radium Institute

Email: lkrasnikov@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021

N. A. Semenova

Khlopin Radium Institute

Email: lkrasnikov@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021

References

  1. Longstaff J.V.L., Singer K. // J. Chem. Soc. 1954. P. 2610–2617.
  2. Kelm M., Oser B., Drobnik S. // Denitration of Radioactive Liquid Waste / Eds L. Cecille, S. Halaszovich. Dordrecht: Springer, 1986. P. 86–96.
  3. Lee E.H., Hwang D.S., Kim K.W., Kwon S.G., Yoo J.H. // J. Korean Ind. Eng. Chem. 1997. Vol. 8. N l. P. 132–139.
  4. Ando M., Fujita M., Izato Yu-ichiro, Miyake A. // Process Safety Environ. Protect. 2021. Vol. 151. P. 182.
  5. Bradley R.F., Goodlett C.B. // USAEC Report DP-1299. Du Pont de Nemours and Company, 1972. P. 48.
  6. Orebaugh E.G. Denitration of Savannah River Plant Waste Streams. SC (the United States): Savannah River Lab. Aiken, 1976. 26 p.
  7. Kubota M., Yamaguchi I., Nakamura H. // J. Nucl. Sci. Technol. 1979. Vol. 16. P. 426–433.
  8. Lee E.H., Hwang D.S., Kim K.W., Shin Y.J., Yoo J.H. // J. Korean Ind. Eng. Chem. 1995. Vol. 6. N 3. P. 406–411.
  9. Hwang D.S., Lee E.H., Kim K.W., Lee K.I., Park J.H., Yoo J.H., Park S.J. // J. Industrial and Engineering Chemistry. 1999. Vol. 5. N 1. P. 45–51.
  10. Holze K., Finke H.-D., Kelm M., Deckwe W.-D. // Сhem. Ing. Tech. 1979. Vol. 51. N 7. P. 754–755.
  11. Красников Л.В., Лумпов А.А., Мурзин А.А., Семенова Н.А. Патент RU 2494479 C1. 2012.
  12. Алой А.С., Самойлов С.Е., Кольцова Т.И., Металиди М.М., Рябков Д.В., Безносюк В.И. и др. Патент RU 2702095 C1. 2018.
  13. Алой А.С., Абашкин А.Ю., Карпович Н.Ф., Кольцова Т.И., Красников Л.В., Мурзин А.А. и др. // Вопр. радиац. безопасности. 2021. № 3 (103). С. 35–46.
  14. Алой А.С., Абашкин А.Ю., Исмаилов Р.В., Кольцова Т.И., Мурзин А.А., Сапрыкин В.Ф., Хоршев А.А. // Хим. технология. 2023. Т. 24. № 1. С. 26–32.
  15. Алой А.С., Вергазов К.Ю., Горбачев М.В., Давыдов А.В., Исмаилов Р.В., Орлова В.А., Серебрянских Р.А. // Радиохимия. 2024. Т. 66. № 6. С. 528–537.
  16. Cecille L., Kelm M. // Denitration of Radioactive Liquid Waste / Eds L. Cecille, S. Halaszovich. Dordrecht: Springer, 1986. P. 11–31.
  17. Родионов С.А., Сапрыкин В.Ф., Савин Р.А., Металиди М.М., Николаев А.Ю., Красников Л.В., Рябков Д.В. // Тез. докл. VIII Всерос. конф. по радиохимии. Железногорск, 28.09–02.10.2015 г. М.: Наука, 2015. С. 207.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (1MB)
3. Fig. 1. Dependence of the completeness of denitration on the molar excess of formic acid. T = 90°C, 1 h

Download (83KB)
4. Fig. 2. Dependence of the induction period duration on the formic acid concentration. T = 90°C, 1.7–3 mol/l HNO3. exp ‒ experiment; (8) – calculation using equation (8); (9) – calculation using equation (9); (11) – calculation using equation (11)

Download (100KB)
5. Fig. 3. Dependence of the induction period on the temperature and the amount of “free” nitrate ion. Uranium concentration 600 g/l

Download (105KB)
6. Fig. 4. Dependence of the induction period on the uranium concentration at a constant total concentration of [NO3 –] 6.72 mol/l. The molar ratio [NO3 –] : [HCOOH] = 1 : 3

Download (108KB)
7. Fig. 5. Dependence of nitrate ion consumption on the ratio [HCOOH] : [NO3 –] for 1 hour. T = 90°C. Uranium concentration 400 g/l

Download (115KB)
8. Fig. 6. Dependence of the amount of uranium in the precipitate on its initial concentration in the reaction mixture. T = 90°C, [HCOOH] : [NO3 –] = 4

Download (114KB)
9. Fig. 7. Dependence of the volume of released gas on the temperature and duration of the reaction. 0.5 mol/l HNO3. Uranium concentration 800 g/l, [HCOOH] : [NO3 –] = 4

Download (106KB)

Copyright (c) 2025 Russian Academy of Sciences