Determination of conditions for the oxidation of UN and UC under microwave radiation
- Authors: Kulyukhin S.A.1, Nevolin Y.M.1, Bessonov A.A.1
-
Affiliations:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 67, No 1 (2025)
- Pages: 3-9
- Section: Articles
- URL: https://ter-arkhiv.ru/0033-8311/article/view/689309
- DOI: https://doi.org/10.31857/S0033831125010012
- ID: 689309
Cite item
Abstract
The oxidation of UN and UC in a field of microwave radiation in air at atmospheric pressure has been studied. The influence of crucible material on the extent of oxidation of UN and UC was studied. It has been established that, under the influence of an MW field with a power of 800 W and a frequency of 2.45 GHz, under certain conditions, heating of UN and UC to ~993 K is observed with their oxidation in air to U3O8. For fast (15–20 min) and safe (without fires and explosions) oxidation of UN and UC, crucibles made of quartz and carbon ceramics are most suitable.
Full Text

About the authors
S. A. Kulyukhin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Author for correspondence.
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
Yu. M. Nevolin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
A. A. Bessonov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
References
- Гюльмалиев Э.А., Третьяков В.Ф., Талышинский Р.М., Борисов В.П., Мовсумзаде Э.М. // История и педагогика естествознания. 2015. Т. 2. С. 59–68.
- Vanetsev A.S., Tretyakov Y.D. // Adv. Chem. 2007. Vol. 76. N 5. P. 435–453.
- Kharissova O.V., Kharisov B.I., Ruız Valdes J.J. // Ind. Eng. Chem. Res. 2010. Vol. 49. N 4. P. 1457–1466.
- Lu X., Chen Sh., Shu X., Hou Ch., Tan H. // Philosoph. Mag. Lett. 2018. Vol. 98. N 4. P. 155–160. https://doi.org/10.1080/09500839.2018.1511068
- Комаров В.И., Молохов М.Н., Сорокин А.А., Харитонов К.А., Балашов А.В., Борисов Г.Б. и др. // Атом. энергия. 2005. Т. 98. № 4. С. 288–293.
- Kulyako Yu.M., Trofimov T.I., Pilyushenko K.S., Vinokurov S.E., Myasoedov B.F. // Phys. At. Nuclei. 2020. Vol. 83. N 10. P. 1396–1399. https://doi.org/10.1134/S1063778820100105
- Dvoeglazov K., Kulyako Yu., Vinokurov S., Myasoedov B., Dmitriev M., Ushakov O. et al. // Energies. 2022. Vol. 15. N 18. P. 6618–6626. https://doi.org/10.3390/en15186618
- Singh G., Kumar P., Aher S., Purohit P., Khot P.M., Prakash A. et al. // J. Nucl. Mater. 2016. Vol. 479. P. 145–151. https://doi.org/10.1016/j.jnucmat.2016.06.053
- Kulyako Y.M., Trofimov T.I., Samsonov M.D., Vinokurov S.E., Myasoedov B.F. // Radiochemistry. 2015. Vol. 57. N 2. P. 127–130.
- Гаврилов П.М., Меркулов И.А., Друзь Д.В., Бондин В.В., Апальков Г.А., Смирнов С.И. и др. // Патент РФ 2654536. 2017.
- Hong S.-M., Jang H., Noh S., Kang H.W., Cho Y.-Z. // J. Radioanal. Nucl. Chem. 2021. Vol. 330. P. 695–705. https://doi.org/10.1007/s10967-021-07972-w
- Advances in Nuclear Fuel Chemistry / Ed. H.A. Markus. Duxford: Woodhead, 2020. 672 p.
- Momotov V.N., Makarov A.O., Volkov A.Yu., Lakeev P.V., Tikhonova D.E., Dvoeglazov K.N. // Radiochemistry. 2023. Vol. 65. N 2. P. 177–184. https://doi.org/10.1134/S1066362223020042
- Металиди М.М., Шаповалов С.В., Исмаилов Р.В., Скриплёв М.И., Безносюк В.И., Федоров Ю.С. // Радиохимия. 2015. Т. 57. № 1. С. 86–89.
- Аксютин П.В., Дьяченко А.С., Жабин А.Ю., Жерин И.И. // Изв. Томского политех. ун-та. Инжиниринг георесурсов. 2021. Т. 332. № 8. C. 18–27.
- Krivov M.P., Kireev G.A., Tenishev A.V., Davydov A.V., Skupov M.V., Solomatin I.D. et al. // J. Nucl. Mater. 2022. Vol. 567. Article 153798. https://doi.org/10.1016/j.jnucmat.2022.153798
- Кулюхин С.А., Неволин Ю.М., Гордеев А.В., Бессонов А.А. // Радиохимия. 2019. Т. 61. № 2. С. 108–116.
- Goncharov V.G., Liu J., van Veelen A., Kriegsman K., Benmore Ch., Sun Ch. et al. // J. Nucl. Mater. 2022. Vol. 569. Article 153904. https://doi.org/10.1016/j.jnucmat.2022.153904
- Sooby E.S., Brigham B.A., Robles G., White J.T., Paisner S.W., Kardoulaki E., Williams B. // J. Nucl. Mater. 2022. Vol. 560. Article 153487. https://doi.org/10.1016/j.jnucmat.2021.153487
- Кулюхин С.А., Гордеев А.В., Румер И.А., Кулемин В.В., Неволин Ю.М. // Атом. энергия. 2018. Т. 124. № 6. С. 344–349.
- Паспорт “Активный оксид алюминия шарик”. ТУ 2163-004-81279372-11. М.: SORBIS Group.
- Каримов О.Х., Даминев Р.Р., Касьянова Л.З., Каримов Э.Х. // Фундаментальные исследования. 2013. № 4-4. С. 801–805. URL: https://fundamental-research.ru/ru/article/view?id=31275 (дата обращения: 28.11.2024).
- JCPDS–Int. Centre for Diffraction Data. PDF 01-074-2101, α-U3O8.
- Куляко Ю.М., Трофимов Т.И., Винокуров С.Е., Самсонов М.Д., Мясоедов Б.Ф. // Вопр. радиац. безопасности. 2015. № 3. С. 13–22.
- Cao Z., Yoshikawa N., Taniguchi Sh. // Mater. Chem. Phys. 2010. Vol. 124. P. 900–903. https://doi.org/10.1016/j.matchemphys.2010.08.004
Supplementary files
