Determination of conditions for the oxidation of UN and UC under microwave radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The oxidation of UN and UC in a field of microwave radiation in air at atmospheric pressure has been studied. The influence of crucible material on the extent of oxidation of UN and UC was studied. It has been established that, under the influence of an MW field with a power of 800 W and a frequency of 2.45 GHz, under certain conditions, heating of UN and UC to ~993 K is observed with their oxidation in air to U3O8. For fast (15–20 min) and safe (without fires and explosions) oxidation of UN and UC, crucibles made of quartz and carbon ceramics are most suitable.

Full Text

Restricted Access

About the authors

S. A. Kulyukhin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

Yu. M. Nevolin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

A. A. Bessonov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

References

  1. Гюльмалиев Э.А., Третьяков В.Ф., Талышинский Р.М., Борисов В.П., Мовсумзаде Э.М. // История и педагогика естествознания. 2015. Т. 2. С. 59–68.
  2. Vanetsev A.S., Tretyakov Y.D. // Adv. Chem. 2007. Vol. 76. N 5. P. 435–453.
  3. Kharissova O.V., Kharisov B.I., Ruız Valdes J.J. // Ind. Eng. Chem. Res. 2010. Vol. 49. N 4. P. 1457–1466.
  4. Lu X., Chen Sh., Shu X., Hou Ch., Tan H. // Philosoph. Mag. Lett. 2018. Vol. 98. N 4. P. 155–160. https://doi.org/10.1080/09500839.2018.1511068
  5. Комаров В.И., Молохов М.Н., Сорокин А.А., Харитонов К.А., Балашов А.В., Борисов Г.Б. и др. // Атом. энергия. 2005. Т. 98. № 4. С. 288–293.
  6. Kulyako Yu.M., Trofimov T.I., Pilyushenko K.S., Vinokurov S.E., Myasoedov B.F. // Phys. At. Nuclei. 2020. Vol. 83. N 10. P. 1396–1399. https://doi.org/10.1134/S1063778820100105
  7. Dvoeglazov K., Kulyako Yu., Vinokurov S., Myasoedov B., Dmitriev M., Ushakov O. et al. // Energies. 2022. Vol. 15. N 18. P. 6618–6626. https://doi.org/10.3390/en15186618
  8. Singh G., Kumar P., Aher S., Purohit P., Khot P.M., Prakash A. et al. // J. Nucl. Mater. 2016. Vol. 479. P. 145–151. https://doi.org/10.1016/j.jnucmat.2016.06.053
  9. Kulyako Y.M., Trofimov T.I., Samsonov M.D., Vinokurov S.E., Myasoedov B.F. // Radiochemistry. 2015. Vol. 57. N 2. P. 127–130.
  10. Гаврилов П.М., Меркулов И.А., Друзь Д.В., Бондин В.В., Апальков Г.А., Смирнов С.И. и др. // Патент РФ 2654536. 2017.
  11. Hong S.-M., Jang H., Noh S., Kang H.W., Cho Y.-Z. // J. Radioanal. Nucl. Chem. 2021. Vol. 330. P. 695–705. https://doi.org/10.1007/s10967-021-07972-w
  12. Advances in Nuclear Fuel Chemistry / Ed. H.A. Markus. Duxford: Woodhead, 2020. 672 p.
  13. Momotov V.N., Makarov A.O., Volkov A.Yu., Lakeev P.V., Tikhonova D.E., Dvoeglazov K.N. // Radiochemistry. 2023. Vol. 65. N 2. P. 177–184. https://doi.org/10.1134/S1066362223020042
  14. Металиди М.М., Шаповалов С.В., Исмаилов Р.В., Скриплёв М.И., Безносюк В.И., Федоров Ю.С. // Радиохимия. 2015. Т. 57. № 1. С. 86–89.
  15. Аксютин П.В., Дьяченко А.С., Жабин А.Ю., Жерин И.И. // Изв. Томского политех. ун-та. Инжиниринг георесурсов. 2021. Т. 332. № 8. C. 18–27.
  16. Krivov M.P., Kireev G.A., Tenishev A.V., Davydov A.V., Skupov M.V., Solomatin I.D. et al. // J. Nucl. Mater. 2022. Vol. 567. Article 153798. https://doi.org/10.1016/j.jnucmat.2022.153798
  17. Кулюхин С.А., Неволин Ю.М., Гордеев А.В., Бессонов А.А. // Радиохимия. 2019. Т. 61. № 2. С. 108–116.
  18. Goncharov V.G., Liu J., van Veelen A., Kriegsman K., Benmore Ch., Sun Ch. et al. // J. Nucl. Mater. 2022. Vol. 569. Article 153904. https://doi.org/10.1016/j.jnucmat.2022.153904
  19. Sooby E.S., Brigham B.A., Robles G., White J.T., Paisner S.W., Kardoulaki E., Williams B. // J. Nucl. Mater. 2022. Vol. 560. Article 153487. https://doi.org/10.1016/j.jnucmat.2021.153487
  20. Кулюхин С.А., Гордеев А.В., Румер И.А., Кулемин В.В., Неволин Ю.М. // Атом. энергия. 2018. Т. 124. № 6. С. 344–349.
  21. Паспорт “Активный оксид алюминия шарик”. ТУ 2163-004-81279372-11. М.: SORBIS Group.
  22. Каримов О.Х., Даминев Р.Р., Касьянова Л.З., Каримов Э.Х. // Фундаментальные исследования. 2013. № 4-4. С. 801–805. URL: https://fundamental-research.ru/ru/article/view?id=31275 (дата обращения: 28.11.2024).
  23. JCPDS–Int. Centre for Diffraction Data. PDF 01-074-2101, α-U3O8.
  24. Куляко Ю.М., Трофимов Т.И., Винокуров С.Е., Самсонов М.Д., Мясоедов Б.Ф. // Вопр. радиац. безопасности. 2015. № 3. С. 13–22.
  25. Cao Z., Yoshikawa N., Taniguchi Sh. // Mater. Chem. Phys. 2010. Vol. 124. P. 900–903. https://doi.org/10.1016/j.matchemphys.2010.08.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photograph of a quartz crucible containing UN under the influence of a MW field

Download (316KB)
3. Fig. 2. Powder X-ray diffraction patterns of samples obtained by oxidation of UN placed in porcelain (1), quartz (2) and carbon ceramic (3) crucibles. MWR irradiation conditions: air, 20 min, 800 W, 2.45 GHz. * U3O8 [23].

Download (112KB)
4. Fig. 3. Photograph of a porcelain crucible containing UC exposed to a MW field

Download (330KB)
5. Fig. 4. Powder X-ray diffraction patterns of samples obtained by oxidation of UС placed in crucibles made of alundum (1), porcelain (2), quartz (3) and carbon ceramics (4). MWR irradiation conditions: air, 20 min, 800 W, 2.45 GHz. * U3O8 [23].

Download (138KB)

Copyright (c) 2025 Russian Academy of Sciences