Preparation of suspension of nanodiamonds with immobilized scandium isotopes for in vivo research

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The conditions for preparing a suspension of detonation synthesis nanodiamonds (NDs) with immobilized scandium in solutions that meet the requirements to solutions for intravenous administration of radiopharmaceuticals (RPs) based on 44Sc and 47Sc are determined. The possibility of quantitatively binding scandium by ND samples in isotonic solutions with the required pH, containing a minimum amount of NDs, is demonstrated. The parameters of the Freundlich and Langmuir adsorption isotherms and ΔG of adsorption under optimal conditions for the most promising ND sample are determined. The conditions found for obtaining NDs with immobilized scandium isotopes will allow further in vivo researches.

全文:

受限制的访问

作者简介

A. Kazakov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

编辑信件的主要联系方式.
Email: adeptak92@mail.ru
俄罗斯联邦, Moscow

D. Pavlova

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS; Mendeleev University of Chemical Technology of Russia

Email: adeptak92@mail.ru
俄罗斯联邦, Moscow; Moscow

I. Ushakov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
俄罗斯联邦, Tomsk

E. Nesterov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
俄罗斯联邦, Tomsk

V. Skuridin

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
俄罗斯联邦, Tomsk

E. Odintsova

Bentonit Company

Email: adeptak92@mail.ru
俄罗斯联邦, Moscow

S. Vinokurov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

Email: adeptak92@mail.ru
俄罗斯联邦, Moscow

B. Myasoedov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS; Interdepartmental Center for Analytical Research in Physics, Chemistry, and Biology, RAS

Email: adeptak92@mail.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Giri P.M., Banerjee A. // Cancers. 2023. Vol. 15. ID 2256.
  2. Elumalai K., Srinivasan S., Shanmugam A. // Biomed. Technol. 2024. Vol. 5. P. 109–122.
  3. Yun W.S., Kim J., Lim D.-K., Kim D.-H., Jeon S.I., Kim K. // Nanomaterials. 2023. Vol. 13. ID 2225.
  4. Kazakov A.G., Babenya J.S., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., et al. // Radiochemistry. 2024. Vol. 66. № 2. P. 191–197.
  5. Kazakov A.G., Babenya J.S., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., et al. // Radiochemistry. 2024. Vol. 66. N 2. P. 198–204.
  6. Kazakov A.G., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., Zukau V.V, et al. // Radiochemistry. 2024. Vol. 66. № 2. P. 205–210.
  7. Skotland T., Iversen T.G., Llorente A., Sandvig K. // Adv. Drug Deliv. Rev. 2022. Vol. 186. ID 114326.
  8. Yakovlev R.Y., Dogadkin N.N., Kulakova I.I., Lisichkin G.V., Leonidov N.B., Kolotov V.P.// Diamond. Relat. Mater. 2015. Vol. 55. P. 77–86.
  9. Karpukhin A.V., Avkhacheva N.V., Yakovlev R.Y., Kulakova I.I., Yashin V.A., Lisichkin G.V., Safronova V.G. // Cell. Biol. Int. 2011. Vol. 35. № 7. P. 727–733.
  10. Dolmatov V.Y., Rudenko D.V., Burkat G.K., Aleksandrova A.S., Vul’ A.Yu., Aleksenskii A.E., et al. // J. Superhard Mater. 2019. Vol. 41. N 3. P. 169–177.
  11. Qaim S.M. // J. Radioanal. Nucl. Chem. 2024. Vol. 333. P. 3577–3584.
  12. Государственная фармакопея Российской Федерации. XV изд. Раздел 3.5: Радиофармацевтические лекарственные препараты. https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/3/3-5/
  13. Volkov D.S., Krivoshein P.K., Mikheev I.V., Proskurnin M.A. // Diamond Relat. Mater. 2020. Vol. 110. ID 108121.
  14. Buchatskaya Y., Romanchuk A., Yakovlev R., Shiryaev A., Kulakova I., Kalmykov S. // Radiochim. Acta. 2015. Vol. 103. N 3. P. 205–211.
  15. Казаков А.Г., Гаращенко Б.Л., Яковлев Р.Ю., Винокуров С.Е., Мясоедов Б.Ф. // Радиохимия. 2020. T. 62. № 6. C. 519–525.
  16. Ahmadijokani F., Molavi H., Peyghambari A., Shojaei A., Rezakazemi M., Aminabhavi T.M., Arjmand M. // J. Environ. Manag. 2022. Vol. 316. ID 115214.
  17. Liu J.-H., Yang S.T., Chen X.-X., Wang H. // Curr. Drug Metab. 2012. Vol. 13. P. 1046–1056.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Kinetics of scandium sorption (440 ng) by NA samples (100 μg/ml) at pH 2, 3, 4 and 5 (a–g, respectively).

下载 (279KB)
3. Fig. 2. Equilibrium values ​​of the degree of scandium sorption (5 μg) by the RUDDM sample at pH 4.0 in 0.9% NaCl from 1 ml of solution.

下载 (62KB)
4. Fig. 3. Freundlich (a) and Langmuir (b) adsorption isotherms for scandium sorption by a RUDDM sample in 0.9% NaCl with pH 4.0.

下载 (147KB)
5. Fig. 4. Presentation of experimental data and obtained adsorption isotherms in Qe–Ce coordinates.

下载 (77KB)
6. Fig. 5. Dependence of ln(Qe/Ce) on Qe during scandium sorption by RUDDM in 0.9% NaCl with pH 4.0.

下载 (72KB)

版权所有 © Russian Academy of Sciences, 2024