Technology for reprocessing mother liquor and washing solution from crystalization purification of HTGR SNF

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The extractants diphenyl-N,N-dioctylcarbamoylmethylphosphine oxide and diphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide for the processing of spent fuel were tested. The conditions for extraction and separation of uranium and TPE–REE were determined. A technological scheme was proposed for processing spent nuclear fuel from high-temperature gas-cooled reactors. During dynamic testing, at least 99.9% of uranium and plutonium and at least 99.5% of americium and rare earth elements were extracted. The TPE + REE and U+Pu fractions were isolated. The U+Pu fraction contained approximately 5% Am, while the TPE + REE fraction had less than 0.1% U and Pu.

Full Text

Restricted Access

About the authors

L. I. Tkachenko

Khlopin Radium Institute

Email: vlvidanov@bochvar.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021

V. L. Vidanov

Bochvar High-Technology Research Institute of Inorganic Materials

Author for correspondence.
Email: vlvidanov@bochvar.ru
Russian Federation, ul. Rogova 5a, Moscow, 123098

E. V. Kenf

Khlopin Radium Institute

Email: vlvidanov@bochvar.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021

N. Yu. Volodina

Khlopin Radium Institute

Email: vlvidanov@bochvar.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021

Ya. O. Pleshakov

Khlopin Radium Institute

Email: vlvidanov@bochvar.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021

A. Yu. Shadrin

Science and Innovations Private Enterprise for Nuclear Industry Scientific Development

Email: vlvidanov@bochvar.ru
Russian Federation, ul. Bol’shaya Ordynka 44, str. 3, Moscow, 119017

References

  1. Volk V.I., Boytsova T.A., Dvoeglazov K.N., Shadrin A.Yu., Cheshuyakov S.A., Chikov A.V., Shlyazhko D.S. // Nucl. Eng. Des. 2021. Vol. 385. Article 111493. https://doi.org/10.1016/j.nucengdes.2021.111493
  2. Horwitz E.P., Kalina D.G., Diamond H., Vandergrift G.F. // Solvent Extr. Ion Exch. 1985. Vol. 3. N 1–2. P. 75.
  3. Ozawa M., Koma Y., Nomura K. Tanaka Y. // J. Alloys Compd. 1998. Vol. 271–273. P. 538.
  4. Koma Y., Watanabe M., Nemoto S., Tanaka Y., Counter A. // Solvent Extr. Ion Exch. 1998. Vol. 16. N 6. P. 1357.
  5. Shadrin A., Kamachev V., Kvasnitsky I. et al. // GLOBAL Conf. Proc. Tsukuba, Oct. 9, 2005. Paper N 129.
  6. Koma Y., Watanabe M., Nemoto S., Tanaka Y. // Nucl. Sci. Technol. 1998. Vol. 35. N 2. P. 130.
  7. Розен А.М., Волк В.И., Бахрушин А.Ю., Захаркин Б.С., Карташева Н.А., Крупнов Б.В., Николотова З.И. // Радиохимия. 1999. Т. 41. № 3. С. 205–212.
  8. Sasaki Y., Umetani S.J. // J. Nucl. Sci. Technol. 2006. Vol. 43. P. 794–797.
  9. Kulyako Y.M., Malikov D.A., Chmutova M.K., Litvina M.N., Myasoedov B.F. // J. Alloys Compd. 1998. Vol. 271–273. P. 760–764.
  10. Lumetta G.J., Carter J.C., Gelis A.V., Vandegrift G.F. // Nuclear Energy and the Environment. 2010. Ch. 9. P. 107.
  11. Lumetta G.J., Gelis A.V., Braley J.C., Carter J.C., Pittman J.W., Warner M.G. // Solvent Extr. Ion Exch. 2013. Vol. 31. P. 223.
  12. Uhnak N.E.F., Nash K.L. // Solvent Extr. Ion Exch. 2021. Vol. 39. P. 18.
  13. Distler P., Mindova M., John J., Babain V.A., Alyapyshev M.Y., Tkachenko L.I. et al. // Solvent Extr. Ion Exch. 2020. Vol. 38. N 2. P. 180.
  14. Tabata C., Nakase M., Harigai M., Shirasaki K., Sunaga A., Yamamura T. // Sep. Sci. Technol. 2022. Vol. 57. P. 1097.
  15. Visser A.E., Rogers R.D. // J. Solid State Chem. 2003. Vol. 171. P. 109.
  16. Mohapatra P.K., Kandwal P., Iqbal M, Huskens J., Murali M.S., Verboom W. // Dalton Trans. 2013. Vol. 42. P. 4343.
  17. Rout A., Venkatesan K.A., Srinivasan T.G., Vasudeva Rao P.R. // Radiochim. Acta. 2009. Vol. 97. P. 719.
  18. Sun T., Zhang Y., Wu Q., Chen J., Xia L., Xu C. // Solvent Extr. Ion Exch. 2017. Vol. 35. P. 408.
  19. Wu W., Sun T., Pu N., Meng D., Li Y., Dang J. et al. // New J. Chem. 2018. Vol. 42. P. 9098.
  20. Gujar R.B., Ansari S.A., Goswami D., Mohapatra P.K. // Sep. Sci. Technol. 2019. Vol. 54. P. 1443.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulas of carbamoylmethylphosphine oxides.

Download (104KB)
3. Fig. 2. Isotherm of uranium extraction from 3 mol/l HNO3 using the extraction system 0.2 mol/l CMFO-1 + 30 vol% TBP in F-3.

Download (69KB)
4. Fig. 3. Values ​​of distribution coefficients during extraction from HNO3 solutions in the presence of 25 g/l U using the extraction system 0.25 mol/l CMFO-1 + 30 vol% TBP in F-3.

Download (95KB)
5. Fig. 4. Schematic diagram of the processing of VGTR MPR using the extraction system 0.25 mol/l CMFO-1 + 30 vol% TBP + F-3.

Download (145KB)

Copyright (c) 2024 Russian Academy of Sciences