Shock wave and centered rarefaction fan in Noble–Abel gas

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Planar supersonic flows of inviscid gas, obeyed the Abel – Noble (AN) equation of state, are considered. Formulas connecting flow parameters of considered gas before and after shock wave are obtained. Solution of Prandtl–Meyer problem for flow of AN gas in centered rarefaction fan is constructed. Critical values of velocity vectors turn angle in oblique shock wave and rarefaction fan are found. Comparisons with corresponding solution for perfect gas are given.

Texto integral

Acesso é fechado

Sobre autores

M. Brutyan

Central Aerohydrodynamic Institute named after N.E. Zhukovsky; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: murad.brutyan@tsagi.ru
Rússia, Zhukovsky; Dolgoprudny

U. Ibragimov

Central Aerohydrodynamic Institute named after N.E. Zhukovsky

Email: umar.ibragimov94@yandex.ru
Rússia, Zhukovsky

M. Meniailov

Central Aerohydrodynamic Institute named after N.E. Zhukovsky

Email: mickmenn@yandex.ru
Rússia, Zhukovsky

Bibliografia

  1. Neron L., Saurel R. Noble–Abel first-order virial equations of state for gas mixtures resulting of multiple condensed reactive materials combustion // Phys. Fluids, 2021, vol. 93, pp. 3090–3097.
  2. Moore F. Approximate Methods for Weapon Aerodynamics. AIAA Pub., 2000. 464 p.
  3. Brutyan M.A., Ibragimov U.G., Meniailov M.A. Self-similar flows of the Abel–Noble gas in a planar diffuser // Proc. of MIPT, 2023, vol. 15, no. 3, pp. 133–143. (in Russian)
  4. Banks J.W. On exact conservation for the euler equations with complex equations of state // Commun. in Comput. Phys., 2010, vol. 8, pp. 995–1015.
  5. Dumbser M, Casulli V. A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier–Stokes equations with general equation of state // Appl. Math.&Comput., 2016, vol. 272, pt. 2, pp. 479–497.
  6. Tang X., Dzieminska E., Hayashi A.K. A preliminary discussion of the real gas effect on the isentropic expansion inlet boundary conditions of high-pressure hydrogen jets // Sci.&Technol. of Energetic Mater., 2019, vol. 80, no. 4, pp. 150–158.
  7. Menikoff R., Plohr B.J. The Riemann problem for fluid flow of real materials // Rev. of Modern Phys., 1989, vol. 61, no. 1, pp. 75–130.
  8. Radulescu M.I. Compressible flow in a Noble–Abel stiffened gas fluid // Phys. Fluids, 2020, vol. 32, 056101, pp. 1–5.
  9. Zifeng Weng, Remy Mevel, Chung K. Law. On the critical initiation of planar detonation in Noble–Abel and van der Waals gas // Combust.&Flame, 2023, vol. 255, pp. 112890. https://doi.org/10.1016/j.combustflame.2023.112890
  10. Gonzales C.A.Q., Pizzuti L., Costa F. Propagation of combustion waves in Noble–Abel gases // 20th Int. Congr. of Mechanical Engineering. Nov. 15–20, 2009. Gramado, Brazil. pp. 1–10.
  11. Shih-I Pai. Introduction to the theory of compressible flow // Literary Licensing, LCС, 2013, pp. 1–400.
  12. Johnston I.A. The Noble–Abel Equation of State: Thermodynamic Derivations for Ballistics Modeling. Edinburgh, South Australia: DSTO, 2005.
  13. Petrik G.G. Problems of low-parameter equations of state // J. of Phys.: Conf. Ser., 2017, vol. 891, art. no. 012328. https://doi.org/10.1088/1742-6596/891/1/012328
  14. Brutyan M.A. Foundation of Transonic Aerodynamics. Moscow: Nauka, 2017. 175 p. (in Russian)
  15. Landau L.D., Lifshitz E.M. Fluid Mechanics. Moscow: Nauka, 1986. 735 p. (in Russian)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Family of shock adiabats (solid line) and isentropes (dashed line); 1) – ; 2) – ; 3) –

Baixar (54KB)
3. Fig. 2. Maximum value of the ratio ρ2 / ρ1 in the shock adiabat (solid line) and in the isentrope (dashed line)

Baixar (37KB)
4. Fig. 3. Flow diagram in the case of an oblique shock wave

Baixar (15KB)
5. Fig. 4. Velocity diagram for oblique shock wave of gas compression AN: 1) – ; 2) – ; 3) – ; 4) – ; 5) – ; 6) –

Baixar (63KB)
6. Fig. 5. Dependence of the flow rotation angle on the shock wave inclination angle: 1) – ; 2) – ; 3) – ; 4) – ; 5) – ; 6) – ; 7) – line corresponding to the value M=1 behind the shock

Baixar (80KB)
7. Fig. 6. Flow diagram in a centered rarefaction wave

Baixar (32KB)
8. Fig. 7. Dependence of the angle of rotation of the velocity vector in the centered rarefaction wave of gas AH, 1) – b* = 0; 2) – b* = 0.1; 3) – b* = 0.2; 4) – b* = 0.3; 5) – b* = 0.4; 6) – b* = 0.5

Baixar (222KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024