Finite-Strain Elastic-Plastic Circular Shear in Materials with Isotropic Hardening

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents an analytical solution to the problem of azimuthal shear in a hollow circular cylinder, isotropic and incompressible, the elastic properties of which are described by the Mooney – Rivlin model, and the plastic properties by the Tresca model with arbitrary monotonic hardening. Both elastic and plastic deformations are assumed to be finite. Sufficient conditions for the existence of the presented solution are given.

Full Text

Restricted Access

About the authors

G. M. Sevastyanov

Institute of Mechanical Science and Metallurgy, KhFRC FEB RAS

Author for correspondence.
Email: akela.86@mail.ru
Russian Federation, Komsomolsk-on-Amur

A. S. Begun

Institute of Mechanical Science and Metallurgy, KhFRC FEB RAS

Email: ustinova@iacp.dvo.ru
Russian Federation, Komsomolsk-on-Amur

A. A. Burenin

Institute of Mechanical Science and Metallurgy, KhFRC FEB RAS

Email: burenin@iacp.dvo.ru
Russian Federation, Komsomolsk-on-Amur

References

  1. Rabotnov Yu.N. Mechanics of Deformable Solids. Moscow: Nauka, 1979. (in Russian)
  2. Myasnikov V.P. Equations of motion of elastoplastic materials under large deformations // Bull. of the FEB RAS, 1996, vol. 4, pp. 8–13. (in Russian)
  3. Rabotnov Yu.N. Creep of Structural Elements. Moscow: Nauka, 1966. (in Russian)
  4. Il’yushin A.A. Plasticity. Moscow: USSR Acad. of Sci., 1963. (in Russian)
  5. Ishlinskii A.Yu., Ivlev D.D. Mathematical Theory of Plasticity. Moscow: Fizmatlit, 2001. (in Russian)
  6. Begun A.S., Burenin A.A., Kovtanyuk L.V. Large irreversible deformations under conditions of changing mechanisms of their formation and the problem of definition of plastic potentials // Dokl. Phys., 2016, vol. 61, no. 9, pp. 463–466. https://doi.org/10.1134/S102833581609007X
  7. Begun A.S., Burenin A.A., Kovtanyuk L.V., Lemza A.O. On the mechanisms of production of large irreversible strains in materials with elastic, viscous and plastic properties // Arch. Appl. Mech., 2020, vol. 90, pp. 829–845. https://doi.org/10.1007/s00419-019-01641-x
  8. Rabotnov Yu.N. Problems of Mechanics of Deformable Solids. Selected papers. Moscow: Nauka, 1991. (in Russian)
  9. Rabotnov Yu.N. On the mechanism of long-term destruction // Issues of Strength of Mater.&Struct. Moscow: USSR Acad. of Sci., 1959. (in Russian)
  10. Rabotnov Yu.N. Effect of stress concentration on long-term strength // Mech. Solids, 1967, vol. 3, pp. 36–41. (in Russian)
  11. Lokoshchenko A.M. Creep and Long-Term Strength of Metals. Moscow: Fizmatlit, 2016. (in Russian)
  12. Volkov I.A., Igumnov L.A. Introduction to Continuum Mechanics of Damaged Media. Moscow: Fizmatlit, 2017. (in Russian)
  13. Lokoshchenko A.M., Fomin L.V., Teraud W.V., Basalov Yu.G., Agababyan V.S. Creep and long-term strength of metals under unsteady complex stress states (Review) // Bull. Samara State Tech. Univ. Ser. Phys.&Math. Sci., 2020, vol. 24, no. 2, pp. 275–318. https://doi.org/10.14498/vsgtu1765
  14. Rabotnov Yu.N. Model illustrating some properties of a hardening plastic body // JAMM, 1959, vol. 23, iss. 1, pp. 219–228. https://doi.org/10.1016/0021-8928(59)90068-1
  15. Rabotnov Yu.N. Solid mechanics and ways of its development // Proc. USSR Acad. of Sci. Dept. Techn. Sci. Mech.&Mech. Engng., 1962, vol. 2, pp. 3–10. (in Russian)
  16. Kliushnikov V.D. On plasticity laws for work-hardening materials // JAMM, 1958, vol. 22, iss. 1, pp. 129–160. https://doi.org/10.1016/0021-8928(58)90088-1
  17. Ivlev D.D., Bykovtsev G.I. Theory of a Hardening Plastic Solid. Moscow: Nauka, 1971. (in Russian)
  18. Bykovtsev G.I., Ivlev D.D. Theory of Plasticity. Vladivostok: Dalnauka, 1998. (in Russian)
  19. Shutov A.V., Kaygorodtseva A.A. Sample shapes for reliable parameter identification in elasto-plasticity // Acta Mech., 2020, vol. 231, pp. 4761–4780. https://doi.org/10.1007/s00707-020-02758-9
  20. Shutov A.V., Kreißig R. Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration // Comput. Meth. Appl. Mech. 2008, vol. 197 (21–24), pp. 2015–2029. https://doi.org/10.1016/j.cma.2007.12.017
  21. Burenin A.A., Kovtanyuk L.V. Large Irreversible Deformations and Elastic Aftereffects. Vladivostok: Dalnauka, 2013 (in Russian)
  22. Burenin A.A., Kovtanyuk L.V., Ustinova A.S. Accounting for the elastic properties of a non-Newtonian material under its viscosimetric flow // J. Appl. Mech. Tech. Phys., 2008, vol. 49, pp. 277–284. https://doi.org/10.1007/s10808-008-0038-y
  23. Begun A.S., Burenin A.A., Kovtanyuk L.V. Flow of an elastoviscoplastic material between rotating cylindrical surfaces with nonrigid cohesion // J. Appl. Mech.&Tech. Phys., 2015, vol. 56, pp. 293–303. https://doi.org/10.1134/S0021894415020157
  24. Begun A.S., Kovtanyuk L.V. Viscometric flow of elastoplastic material heated by wall friction // J. Appl. Mech.&Tech. Phys., 2021, vol. 62, pp. 779–788. https://doi.org/10.1134/S0021894421050096
  25. Begun A.S., Burenin A.A., Kovtanyuk L.V. Calculations of large nonisothermal deformations of elastoviscoplastic materials // Mech. Solids, 2022, vol. 57, pp. 2066–2077. https://doi.org/10.3103/S0025654422080052
  26. Sevast’yanov G.M., Burenin A.A. Local adiabatic heating effect in finite-strain elastic-plastic torsion // J. Appl. Mech.&Tech. Phys., 2019, vol. 60, pp. 1104–1114. https://doi.org/10.1134/S002189441906016627.
  27. Burenin A.A., Ustinova A.S. Development and inhibition of helical viscoplastic flow with calculation of the elastic response after stopping the flow and unloading // in: The Coll. of Papers Dedicated to the 70th Anniv. of Acad. V.A. Levin. Vladivostok: 2009. (in Russian)
  28. Begun A.S., Burenin A.A., Kovtanyuk L.V. Helical viscoplastic flow in a gap between rigid cylinders // Mech. Solids, 2017, vol. 52, no. 6, pp. 640–652. https://doi.org/10.3103/S0025654417060048
  29. Sevastyanov G.M., Bormotin K.S. Finite-strain elastic-plastic torsion: analytical and fem modeling for nonmonotonically hardening polymers // PNRPU Mech. Bull., 2023, vol. 3, pp. 124–136. https://doi.org/10.15593/perm.mech/2023.3.11
  30. Sevastyanov G.M. Finite-strain elastic-plastic torsion: comparison of von Mises and Tresca materials // Mater. Phys. Mech., 2023, vol. 51, no. 2, pp. 140–150. https://doi.org/10.18149/MPM.5122023_13
  31. Arutyunyan N.Kh., Radayev Yu.N. Elastoplastic torsion of a cylindrical rod for finite deformations // JAMM, 1989, vol. 53, no. 6, pp. 804–811. https://doi.org/10.1016/0021-8928(89)90090-7
  32. Toth L.S., Arzaghi M., Fundenberger J.J., Beausir B., Bouaziz O., Arruffat-Massion R. Severe plastic deformation of metals by high-pressure tube twisting // Scripta Mater., 2009, vol. 60, no. 3, pp. 175–177. https://doi.org/10.1016/j.scriptamat.2008.09.029
  33. Wang J.T., Li Zh., Wang J., Langdon T.G. Principles of severe plastic deformation using tube high-pressure shearing // Scripta Mater., 2012, vol. 67, no. 10, pp. 810–813. https://doi.org/10.1016/j.scriptamat.2012.07.028
  34. Faraji G., Kim H.S. Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes // Mater. Sci. Tech., 2016, vol. 33, no. 8, pp. 905–923. https://doi.org/10.1080/02670836.2016.1215064
  35. Pougis A., Toth L.S., Bouaziz O., Fundenberger J.J., Barbier D., Arruffat R. Stress and strain gradients in high-pressure tube twisting // Scripta Mater., 2012, vol. 66, no. 10, pp. 773–776. https://doi.org/10.1016/j.scriptamat.2012.02.004
  36. Lapovok R., Qi Y., Ng H.P., Toth L.S., Estrin Yu. Gradient structures in thin-walled metallic tubes produced by continuous high pressure tube shearing process // Adv. Eng. Mater., 2017, vol. 19, art. no. 1700345. https://doi.org/10.1002/adem.201700345
  37. Lapovok R., Pougis A., Lemiale V., Orlov D., Toth L.S., Estrin Yu. Severe plastic deformation processes for thin samples // J. Mater. Sci., 2010, vol. 45, pp. 4554–4560. https://doi.org/10.1007/s10853-010-4403-x
  38. Lapovok R., Ng H.P., Tomus D., Estrin Yu. Bimetallic copper-aluminium tube by severe plastic deformation // Scripta Mater., 2012, vol. 66, pp. 1081–1084. https://doi.org/10.1016/j.scriptamat.2012.03.004
  39. Korobeinikov S.N. Nonlinear Deformation of Solids. Novosibirsk: SB RAS, Pub., 2000. (in Russian)
  40. Shitikov A.V., Bykovtsev G.I. Finite deformations of elastoplastic media // Dokl. Phys., 1990, vol. 311, no. 1, pp. 59–62. (in Russian)
  41. Burenin A.A., Bykovtsev G.I., Kovtanyuk L.V. A simple model of finite strain in an elastoplastic medium // Dokl. Phys., 1996, vol. 347, no. 2, pp. 199–201. (in Russian)
  42. Mehrabadi M.M., Nemat-Nasser S. Some basic kinematical relations for finite deformations of continua // Mech. Mater., 1987, vol. 6, no. 2, pp. 127–138. https://doi.org/10.1016/0167-6636(87)90003-2
  43. Levitas V.I. Large Deformation of Materials with Complex Rheological Properties at Normal and High Pressure. N.Y.: Nova Sci. Pub., 1996.
  44. Feng B., Levitas V.I., Hemley R.J. Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells // Int. J. Plast., 2016, vol. 84, pp. 33–57. https://doi.org/10.1016/j.ijplas.2016.04.017
  45. Sevastyanov G.M. Analytical solution for high-pressure torsion in the framework of geometrically nonlinear non-associative plasticity // Int. J. Solids Struct., 2020, vol. 206, pp. 383–395. https://doi.org/10.1016/j.ijsolstr.2020.09.028
  46. Rogovoi A.A. Thermodynamics of finite strain elastic-inelastic deformation // J. Appl. Mech.&Tech. Phys., 2007, vol. 48, no. 4, pp. 591–598. https://doi.org/10.1007/s10808-007-0074-z
  47. Rogovoy A.A. Formalized Approach to Constructing Models of the Mechanics of a Deformable Solid. Pt. II. Moscow;Izhevsk: Inst. of Comput. Res., 2023.
  48. Alexandrov S., Richmond O. Couette flows of rigid/plastic solids: analytical examples of the interaction of constitutive and frictional laws // Int. J. Mech. Sci., 2001, vol. 43, no. 3, pp. 653–665. https://doi.org/10.1016/S0020-7403(00)00045-X
  49. Haward R.N. The derivation of a strain hardening modulus from true stress-strain curves for thermoplastics // Polymer. 1994. vol. 35, no. 18, pp. 3858–3862. https://doi.org/10.1016/0032-3861(94)90268-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Circular shear under plane strain conditions.

Download (99KB)
3. Fig. 2. Elastic-plastic deformation.

Download (155KB)
4. Fig. 3. Curvature of initially radially oriented material fibers after circular shear (rotation angle in degrees). The symbol “■” denotes the position of the elastic-plastic boundary.

Download (299KB)
5. Fig. 4. Relationship between the tangential stress on the outer surface of the specimen and the angle of rotation (in radians). The radian value corresponds to the complete transition of the specimen to the plastic state.

Download (84KB)
6. Fig. 5. Propagation of elastic-plastic boundary (rotation angle in radians).

Download (93KB)
7. Fig. 6. Distribution of the accumulated plastic strain along the cross-section of the specimen: 1 - , 2 - , 3 - , 4 - , 5 - , 6 - , 7 - (rotation angle in radians).

Download (159KB)
8. Fig. 7. Evolution of the accumulated plastic strain on the boundary surfaces (rotation angle in radians). The radian value corresponds to the complete transition of the specimen into the plastic state.

Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences