Comparison of Time and Frequency Approaches to Simulation of Signals of Optical Rayleigh Reflectometers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The range of applications for distributed fiber-optic sensors is constantly expanding due to both the growing needs of industry and the development of the measurement capabilities of the sensors themselves. In connection with the need to develop methods for interpreting sensor signals, it is extremely important to form sets of test signals for distributed fiber-optic sensors obtained under known conditions and effects on the fiber. In the presence of reliable analytical models of signals from distributed fiber-optic sensors, it is extremely convenient to obtain test signals in the course of numerical experiments. The paper will consider the processes of formation of backscattering signals in Rayleigh reflectometric systems and describe physical and mathematical models that allow calculations of signals under different operating conditions. Two approaches for calculating the resulting backscatter signal are proposed: (1) based on the temporal representation of the probing signal and the impulse response of the sensitive fiber and (2) an alternative approach based on the spectral representation of the probing signal and the transfer function of the fiber. The presented results can be used both for direct simulation of the operation of reflectometric systems using Rayleigh scattering and for the analysis of existing limitations and the specifics of their operation.

About the authors

N. A. Ushakov

Peter the Great St. Petersburg Polytechnic University

Email: n.ushakoff@spbstu.ru
195251, St. Petersburg, Russia

L. B. Liokumovich

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: n.ushakoff@spbstu.ru
195251, St. Petersburg, Russia

References

  1. Hartog A.H. An Introduction to Distributed Optical Fibre Sensors. CRC Press. https://doi.org/10.1201/9781315119014
  2. Gorshkov B.G., Yüksel K., Fotiadi A.A., Wuilpart M., Korobko D.A., Zhirnov A.A., Stepanov K.V., Turov A.T., Konstantinov Y.A., Lobach I.A. // Sensors. 2022. V. 22. P. 1033. https://doi.org/10.3390/s22031033
  3. Juarez J.C., Maier E.W., Choi K.N., Taylor H.F. // J. Light Technol. 2005. V. 23. P. 2081. https://doi.org/10.1109/JLT.2005.849924
  4. Lellouch A., Biondi B.L. // Sensors. 2021. V. 21. P. 2897. https://doi.org/10.3390/s21092897
  5. Lindsey N.J., Martin E., Dreger D.S., Freifeld B., Cole S., James S.R., Biondi B., Ajo-Franklin J.B. // Geophys. Res. Lett. 2017. V. 44. P. 11. https://doi.org/10.1002/2017gl075722
  6. Titov A., Kazei V., AlDawood A., Alfataierge E., Bakulin A., Osypov K. // Sensors. 2022. V. 22. P. 1027. https://doi.org/10.3390/s22031027
  7. Brinkmeyer E. // Electron. Lett. 1977. V. 16. P. 329. https://doi.org/10.1049/el:19800235
  8. Brinkmeyer E. // J. Opt. Soc. Am. 1980. V. 70. P. 1010. https://doi.org/10.1364/JOSA.70.001010
  9. Hartog A.H., Gold M. // J. Light. Technol. 1984. V. 2. P. 76. https://doi.org/10.1109/JLT.1984.1073598
  10. Feigel B., Erps J.V., Khoder M., Beri S., Jeuris K., Goidsenhoven D.V., Watte J., Thienpont H. // J. Light. Technol. 2014. V. 32. P. 3008. https://doi.org/10.1109/JLT.2014.2330693
  11. Healey P. // Electron. Lett. 1985. V. 21. P. 226. https://doi.org/10.1049/EL:19850161
  12. Mermelstein M., Posey R., Johnson G.A., Vohra S.T. // Opt. Lett. 2001. V. 26. P. 58. https://doi.org/10.1364/OL.26.000058
  13. Liokumovich L.B., Ushakov N.A., Kotov O.I., Bisyarin M.A., Hartog A.H. // J. Light. Technol. 2015. V. 33. P. 3660. https://doi.org/10.1109/JLT.2015.2449085
  14. Zhou J., Pan Z., Ye Q., Cai H., Qu R., Fang Z. // J. Light. Technol. 2013. V. 31. P. 2947. https://doi.org/10.1109/JLT.2013.2275179
  15. Lu X., Thomas P. // J. Light. Technol. 2020. V. 38. P. 974. https://doi.org/10.1109/JLT.2019.2949624
  16. Liehr S., Münzenberger S., Krebber K. // Opt. Express. 2018. V. 26. P. 10573. https://doi.org/10.1364/oe.26.010573
  17. Tovar P., Lima B.C., von der Weid J.P. // J. Light. Tehnol. 2022. V. 40. P. 4765. https://doi.org/10.1109/JLT.2022.3164793
  18. Chen D., Liu Q., He Z. // Opt. Express. 2017. V. 25. P. 8315. https://doi.org/10.1364/oe.25.008315
  19. Pastor-Graells J., Martins H.F., Garcia-Ruiz A., Martin-Lopez S., Gonzalez-Herraez M. // Opt. Express. 2016. V. 24. P.13121. https://doi.org/10.1364/OE.24.013121
  20. Marcon L., Soto M.A., Soriano-Amat M., Costa L., Fernandez-Ruiz M.R., Martins H.F., Palmieri L., Gonzalez-Herraez M. // J. Light. Technol. 2020. V. 38. P. 4142. https://doi.org/10.1109/JLT.2020.2981741

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (71KB)
3.

Download (280KB)
4.

Download (54KB)

Copyright (c) 2023 Н.А. Ушаков, Л.Б. Лиокумович