Seasonal and multi-year dynamics of soil moisture in meadow-chernozem soils (Oka-Don lowland)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The observed climate changes and increasing groundwater levels in the forest-steppe region should be reflected in the water regime of the Gleyic Chernozem soils. This article analyzes the daily and seasonal dynamics of volumetric moisture in background Gleyic Chernozem (Siltic, Pachic) and two arable Gleyic Chernozem soils (Siltic, Aric, Pachic), as well as the level of groundwater in the Tokarevsky district of the Tambov region during the period from autumn 2022 to summer 2023. The obtained data is compared with regime observations of volumetric moisture and groundwater levels of these soils from 1969–1971. The use of automated monitoring systems for soil moisture and groundwater levels has allowed for continuous data collection on soil moisture, assessment of the diurnal dynamics, and detailed tracking of seasonal changes in soil moisture. The background chernozem soil is characterized by higher moisture levels compared to arable soils; the upper horizons of cultivated soils are characterized by a higher frequency of wetting-drying periods and a shorter continuous duration of these periods – which is confirmed both by moisture monitoring data and by the morphological features of the soils, such as the form of carbonate neoformations and the depth of their detection. During the observation period in 2022–2023, the meadow-chernozem soils were relatively dry, despite the higher than normal annual precipitation. Moisture levels conducive to wilting in the top 20 cm layer of cultivated soils were established from March 2023, and in the background soil from the end of April 2023. Periods with humidity exceeding the minimum moisture capacity within the entire 60 cm depth were not observed during the entire observation period. The soils were drier than in the dry year of 1972, when the humidity was less than the wilting point in the upper part of the profile from June to September. In the wet years of 1969–1970, the humidity did not drop below the wilting point in the upper 20 cm layer throughout the observation period. The main reason for this difference in humidity is the change in the level of groundwater: in 2022–2023, the majority of the groundwater was more than 4 m deep, whereas in 1969 it did not go deeper than 2 m and in 1971 – deeper than 4 m. As a result, the soil’s uptake of moisture through capillary action did not occur in 2022–2023, and the water regime of the meadow-chernozem soils more closely resembled the water regime of chernozems.

Sobre autores

M. Smirnova

Dokuchaev Soil Science Institute; Lomonosov Moscow State University

Autor responsável pela correspondência
Email: summerija@yandex.ru
ORCID ID: 0000-0002-5256-4348
Moscow, 119017; Moscow, 119999

D. Bardashov

Dokuchaev Soil Science Institute; Lomonosov Moscow State University

Email: summerija@yandex.ru
ORCID ID: 0009-0007-2425-1911
Rússia, Moscow, 119017; Moscow, 119999

P. Fil

Dokuchaev Soil Science Institute

Email: summerija@yandex.ru
ORCID ID: 0000-0002-9851-5381
Rússia, Moscow, 119017

N. Lozbenev

Dokuchaev Soil Science Institute

Email: summerija@yandex.ru
ORCID ID: 0000-0003-0377-3124
Rússia, Moscow, 119017

A. Dobrokhotov

Dokuchaev Soil Science Institute; Agrophysical Research Institute

Email: summerija@yandex.ru
ORCID ID: 0000-0002-9368-6229
Rússia, Moscow, 119017; St. Petersburg, 195220

Bibliografia

  1. Айдаров И.П. Регулирование водно-солевого и питательного режимов орошаемых земель. М.: Агропромиздат, 1985. 304 с.
  2. Ахтырцев А.Б., Адерихин П.Г., Ахтырцев Б.П. Лугово-черноземные почвы центральных областей Русской равнины. Воронеж: Изд-во Воронежского ун-та, 1981. 174 с.
  3. Базыкина Г.С., Овечкин С.В. Влияние цикличности климата на водный режим и карбонатный профиль черноземов центра европейской части России и сопредельных территорий // Почвоведение. 2016. № 4. С. 475–488.
  4. Водяницкий Ю.Н. Диагностика переувлажненных минеральных почв. М.: Почв. ин-т им. В.В. Докучаева, 2008. 81 c.
  5. Зайдельман Ф.Р. Естественное и антропогенное переувлажнение почв. СПб.: Гидрометеоиздат, 1992. 288 c.
  6. Зайдельман Ф.Р., Степанцова Л.В., Никифорова А.С., Красин В.Н., Сафронов С.Б., Красина Т.В. Генезис и деградация черноземов Европейской России под влиянием переувлажнения. Способы защиты и мелиорации. Воронеж: Кварта, 2013. 352 с.
  7. Киреева М.Б., Илич В.П., Фролова Н.Л., Харламов М.А., Сазонов А.А., Михайлюкова П.Г. Вклад климатических и антропогенных факторов в формирование маловодного периода в бассейне разрез Дон 2007–2015 гг. // Геориск. 2017. № 4. С. 10–21.
  8. Мильков Ф.Н. Физико-географическое районирование Центрально-Черноземных областей. Воронеж: Изд-во Воронежского ун-та, 1961. 363 с.
  9. Молодцов В.А., Игнатова В.П. Об определении состава поглощенных оснований в засоленных почвах // Почвоведение. 1975. № 6. С. 123–127.
  10. Национальный доклад “Глобальный климат и почвенный покров России: проявления засухи, меры предупреждения, борьбы, ликвидация последствий и адаптационные мероприятия (сельское и лесное хозяйство)”. М.: Изд-во МБА, 2021. Т. 3. 700 с.
  11. Поздняков С.П., Ведяшкина В.В., Филимонова Е.А., Позднякова Н.И. Ретроспективный анализ многолетних колебаний уровней воды в Докучаевском колодце в Каменной Степи // Вестник Моск. ун-та. Сер. 4. Геология. 2023. С. 110–126.
  12. Полевой определитель почв. М.: Почв. ин-т им. В.В. Докучаева, 2008. 182 с.
  13. Почвенный покров и земельные ресурсы Российской Федерации. М.: Почв. ин-т им. В.В. Докучаева РАСХН, 2001. 400 с.
  14. Роде А.А. Водный режим почв и его регулирование. М.: Изд-во АН СССР, 1963. 119 с.
  15. Савин И.Ю., Виндекер Г.В. Некоторые особенности использования оптических свойств поверхности почв для определения их влажности // Почвоведение. 2021. № 7. С. 806–814.
  16. Самойлова Е.М. Луговые почвы лесостепи. М.: Изд-во Моск. ун-та, 1981. 283 с.
  17. Степанцова Л.В., Красин В.Н. Количественный показатель глубины залегания грунтовых вод в черноземовидных почвах севера Тамбовской равнины // Вестн. МичГАУ. 2011. Ч. 1. № 2. С. 106–110.
  18. Хохлова О.С. Карбонатное состояние степных почв как индикатор и память их пространственно-временной изменчивости. Дис. … докт. геогр. наук. М., 2008. 331 с.
  19. Шеин Е.В., Болотов А.Г., Дембовецкий А.В. Гидрология почв агроландшафтов: количественное описание, методы исследования, обеспеченность почвенных запасов влаги // Почвоведение. 2021. Т. 55. № 9. С. 1076–1084.
  20. Allen R.G., Pereira L.S., Raes D., Smith M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations. 1998. V. 56(97). 156 p.
  21. Allen R.G., Tasumi M., Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model // J. Irrigation Drainage Engineering. 2007. V. 133. № 4. P. 380–394.
  22. Allen R.G., Walter I.A., Elliott R., Howell R., Itenfisu D., Jensen M. The ASCE standardized reference evapotranspiration equation // Environmental and Water Resources Institute of the American Society of Civil Engineers. 2005. V. 57. 59 p.
  23. Daly E., Porporato A. A review of soil moisture dynamics: From rainfall infiltration to ecosystem response // Environ. Engineer. Sci. 2005. V. 22(1). P. 9–24. https://doi.org/10.1089/ees.2005.22.9
  24. Deng, L., Peng C., Kim D.G., Li J., Liu Y., Hai X., Kuzyakov Y. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems // Earth-Sci. Rev. 2021. V. 214. P. 103501. https://doi.org/10.1016/j.earscirev.2020.103501
  25. Dorigo W., Himmelbauer I., Aberer D., Schremmer L., Petrakovic I., Zappa L., Preimesberger W. et al. The International Soil Moisture Network: serving Earth system science for over a decade // Hydrology Earth System Sci. 2021. V. 25. P. 5749–5804. https://doi.org/10.5194/hess-25-5749-2021
  26. Fil P.P., Yurova A.Y., Dobrokhotov A., Kozlov D. Estimation of infiltration volumes and rates in seasonally water-filled topographic depressions based on remote-sensing time series // Sensors. 2021. V. 21. № 21. P. 7403.
  27. Harris I.C. CRU TS v4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2018). Centre for Environmental Data Analysis (CEDA). 2019. https://doi.org/10.5285/10d3e3640f004c578403419aac167d82
  28. Hupet F., Vanclooster M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field // J. Hydrology. 2002. V. 261. № 1–4. P. 86–101. https://doi.org/10.1016/S0022-1694(02)00016-1
  29. Khitrov N., Smirnova M., Lozbenev N., Levchenk, E., Gribov V., Kozlov D., Rukhovich D., Kalinina N., Koroleva P. Soil cover patterns in the forest-steppe and steppe zones of the east-european plain // Soil Sci. Annual. 2019. V 70(3). P. 198–210. https://doi.org/10.2478/ssa-2019-0018
  30. Lal R. Managing Chernozem for Reducing Global Warming // Regenerative Agriculture. 2021. P. 81–93.https://doi.org/10.1007/978-3-030-72224-1_7
  31. Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V. N., Underwood E.C., D’Amico J.A. et al. Terrestrial ecoregions of the world: a new map of life on Earth // Bioscience. 2001. V. 51(11). P. 933–938.
  32. Pablos M., Martínez-Fernández J., Piles M., Sánchez N., Vall-llossera M., Camps A. Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations // Remote Sensing. 2016. V. 8. № 7. P. 587. https://doi.org/10.3390/rs8070587
  33. Porporato A., Daly E., Rodriguez-Iturbe I. Soil water balance and ecosystem response to climate change //The American Naturalist. 2004. V. 164. № 5. P. 625–632. https://doi.org/10.1086/424970
  34. Rosenbaum U., Bogena H.R., Herbst M., Huisman J.A., Peterson T.J., Weuthen A., Western A.W., Vereecken H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale // Water Resources Research. 2012. V. 48. № 10. https://doi.org/10.1029/2011WR011518
  35. Saha S., Moorthi S., Wu X., Wang J., Nadiga S., Tripp P., Behringer D., Hou Y. T., Chuang H.Y., Iredell M., Ek M. The NCEP climate forecast system version 2 // J. Climate. 2014. V. 27(6). P. 2185-2208.
  36. Seneviratne S.I., Corti T., Davin E.L., Hirschi M., Jaeger E.B., Lehner I., Orlowsky B., Teuling A.J. Investigating soil moisture–climate interactions in a changing climate: A review // Earth-Science Reviews. 2010. V. 99. № 3–4. P. 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004
  37. Vereecken H., Huisman J.A., Pachepsky Y., Montzka C., Van Der Kruk J., Bogena H., Weihermüller L., Herbst M., Martinez G., Vanderborght J. On the spatio-temporal dynamics of soil moisture at the field scale // J. Hydrology. 2014. V. 516. P. 76–96. https://doi.org/10.1016/j.jhydrol.2013.11.061
  38. Wang C., Wang S., Fu B., Zhang L., Lu N., Jiao L. Stochastic soil moisture dynamic modelling: a case study in the Loess Plateau, China // Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2018 V. 109(3–4). P. 437–444. https://doi.org/10.1017/S1755691018000658
  39. Zheng J., Zhao T., Lü H., Shi J., Cosh M. H., Ji D., Kang C.S. Assessment of 24 soil moisture datasets using a new in situ network in the Shandian River Basin of China // Remote Sensing of Environment. 2022. V. 271. P. 112891. https://doi.org/10.1016/j.rse.2022.112891
  40. Zhou T., Han C., Qiao L., Ren C., Wen T., Zhao C. Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau // J. Arid Land. 2021. V. 13. P. 1015–1025. https://doi.org/10.1007/s40333-021-0021-5

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Additional Materials
Baixar (13KB)
3. Fig. 1. Location of the study area (a) – within the forest-steppe (the boundaries of the forest-steppe are given according to [31]; (b) – location of the site within the undrained terrain type of the Oka-Don Lowland; (c) – space image indicating the location of monitoring points; (d) – relief of the site indicating monitoring points).

Baixar (1MB)
4. Fig. 2. Soils of the study area.

Baixar (159KB)
5. Fig. 3. Dynamics of moisture and groundwater table monitoring in meadow-chernozem soils during the monitoring period from 01.10.2022 to 09.01.2024. The upper part of the figure shows precipitation and temperature during the period under review, and the dynamics of the indicators for individual soils (sections 1–3) is below. For each of the soils, the upper figure: chronoisopleths show the values ​​of volumetric moisture (%), the color background with shading shows the values ​​of soil-hydrological constants, and the italicized values ​​of volumetric moisture for soil-hydrological constants; the lower figure shows the groundwater level. Soil-hydrological constants: TC – total moisture capacity, LC – least moisture capacity, CBR – capillary break moisture, defined as 0.7CBR; WL – wilting point moisture; MG – maximum hygroscopicity.

Baixar (1MB)
6. Fig. 4. Chronoisopleths of humidity differences between adjacent observation periods in the 20–40 cm layer for the period 10.14.2022–10.07.2023.

Baixar (513KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024