Разделение промышленных аммиаксодержащих газовых смесей с помощью полимерных мембран

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Развитие аммиачной промышленности и направления применения аммиака как перспективного носителя водорода невозможно без исследований технологий разделения аммиак-содержащих газовых смесей (NH3–H2–N2). Мембранное газоразделение — перспективное направление для решения данной задачи. В настоящем обзоре представлена информация по существующим разработкам в области водород- и аммиак-селективных газоразделительных мембран, с фокусом на синтетических полимерных материалах. Рассмотрен широкий спектр материалов различных типов (иономерные материалы, полиолефины, поликонденсационные материалы, фторсодержащие полимеры, силоксановые полимеры, гибридные мембраны), представлены сведения по коэффициентам проницаемости NH3, H2, N2, а также по идеальным селективностям пар этих газов. Продемонстрировано, что наиболее удовлетворительными транспортными и разделительными характеристиками обладают иономерные материалы, а также мембраны на основе новых типов полиимидов.

Full Text

Restricted Access

About the authors

Виктория Евгеньевна Рыжих

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0002-1338-1231

н. с., к. х. н.

Russian Federation, Москва, 119991

Николай Александрович Белов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0001-5118-3909

с. н. с., к. х. н.

Russian Federation, Москва, 119991

Эдуард Григорьевич Новицкий

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0001-9009-2073

в. н. с., к. х. н.

Russian Federation, Москва, 119991

Татьяна Сергеевна Анохина

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: sbazhenov@ips.ac.ru
ORCID iD: 0009-0001-6154-3709

и. о. зав. лаб., к. х. н.

Russian Federation, Москва, 119991

Susanta Banerjee

Indian Institute of Technology

Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0002-0358-3198

Professor (HAG) & Institute Chair Professor, PhD

India, Kharagpur, West Bengal, 721302

Степан Дмитриевич Баженов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Author for correspondence.
Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0002-2010-5294

зав. лаб., к. х. н.

Russian Federation, Москва, 119991

References

  1. Ibarrola Rivas M.J. Estimating Future Global Needs for Nitrogen Based on Regional Changes of Food Demand // Agricultural Research & Technology: Open Access J. 2017. V. 8. № 2. ID555635. https://doi.org/10.19080/ARTOAJ.2017.08.555735
  2. Wan Z., Tao Y., Shao J., Zhang Y., You H. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells // Energy Conversion and Management. 2021. V. 228. ID113729. https://doi.org/10.1016/j.enconman.2020.113729
  3. Lin B., Nowrin F.H., Rosenthal J.J., Bhown A.S., Malmali M. Perspective on Intensification of haberbosch to enable ammonia production under milder conditions // ACS Sustainable Chemistry & Engineering. 2023. V. 11. № 27. P. 9880–9899. https://doi.org/10.1021/acssuschemeng.2c06711
  4. Chen H., Cong T. N., Yang W., Tan C., Li Y., Ding Y. Progress in electrical energy storage system: A critical review // Progress in Natural Science. 2009. V. 19. № 3. P. 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014
  5. Wilkinson I. Green Ammonia // Siemens AG. 2017. URL: https://warwick.ac.uk/fac/sci/eng/research/grouplist/electricalpower/images/newsnevents/hies2017/presentations/hies2017_siemens_ianwilkinson.pdf (дата обращения 18.09.2024).
  6. International energy agency Global Hydrogen Review. 2023. URL: https://iea.blob.core.windows.net/assets/8d434960-a85c-4c02-ad96–77794aaa175d/Global HydrogenReview2023.pdf (дата обращения 18.09.2024).
  7. Якубсон К.И. Перспективы производства и использования водорода как одно из направлений развития низкоуглеродной экономики в Российской Федерации (обзор) // Журн. прикладной химии. 2020. Т. 93. № 12. С. 1675–1695. https://doi.org/10.31857/S0044461820120014. [Yakubson K.I. Prospects for production and use of hydrogen as one of directions of the development of low-carbon economy in the Russian Federation // Russ. J. of Appl. Chemistry. 2020. V. 93. № 12. P. 1775–1795. https://doi.org/10.31857/S0044461820120014]
  8. Singla S., Shetti N.P., Basu S., Mondal K., Aminabhavi T. M. Hydrogen production technologies — Membrane based separation, storage and challenges // J. of Environmental Management. 2022. V. 302. ID113963. https://doi.org/10.1016/j.jenvman.2021.113963
  9. Teichmann D., Arlt W., Wasserscheid P. Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy // Int. J. of Hydrogen Energy. 2012. V. 37. № 23. P. 18118–18132. https://doi.org/10.1016/j.ijhydene.2012.08.066
  10. Wijayanta A.T., Oda T., Purnomo C.W., Kashiwagi T., Aziz M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review // Int. J. of Hydrogen Energy. 2019. V. 44. № 29. P. 15026–15044. https://doi.org/10.1016/j.ijhydene.2019.04.112
  11. Алдошин С.М., Максимов А.Л., Арутюнов В.С., Седов И.В. Получение, хранение и применение водорода. Новые идеи и перспективные разработки. М.: РАН. 2023. 384 с.
  12. Sartbaeva A., Kuznetsov V.L., Wells S.A., Edwards P.P. Hydrogen nexus in a sustainable energy future // Energy & Environmental Science. 2008. V. 1. № 1. P. 79–85. https://doi.org/10.1039/b810104n
  13. Pradhan A.U., Shukla A., Pande J.V., Karmarkar S., Biniwale R.B. A feasibility analysis of hydrogen delivery system using liquid organic hydrides // Int. J. of Hydrogen Energy. 2011. V. 36. № 1. P. 680–688. https://doi.org/10.1016/j.ijhydene.2010.09.054
  14. Valera-Medina A., Xiao H., Owen-Jones M., David W.I.F., Bowen P.J. Ammonia for power // Progress in energy and combustion science. 2018. V. 69. P. 63–102. https://doi.org/10.1016/j.pecs.2018.07.001
  15. Aziz M., Oda T., Morihara A., Kashiwagi T. Combined nitrogen production, ammonia synthesis, and power generation for efficient hydrogen storage // Energy Procedia. 2017. V. 143. P. 674–679. https://doi.org/10.1016/j.egypro.2017.12.745
  16. Bellamkonda S., Thangavel N., Hafeez H. Y., Neppolian B., Ranga Rao G. Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: An efficient non-noble metal photocatalyst for water splitting // Catalysis Today. 2019. V. 321–322. P. 120–127. https://doi.org/10.1016/j.cattod.2017.10.023
  17. Giddey S., Badwal S.P.S., Munnings C., Dolan M. Ammonia as a renewable energy transportation media // ACS Sustainable Chemistry & Engineering. 2017. V. 5. № 11. P. 10231–10239. https://doi.org/10.1021/acssuschemeng.7b02219
  18. Klerke A., Christensen C. H., Nørskov J. K., Vegge T. Ammonia for hydrogen storage: challenges and opportunities // J. of Materials Chemistry. 2008. V. 18. № 20. P. 2304–2310. https://doi.org/10.1039/b720020j
  19. Zamfirescu C., Dincer I. Using ammonia as a sustainable fuel // J. of Power Sources. 2008. V. 185. № 1. P. 459–465. https://doi.org/10.1016/j.jpowsour.2008.02.097
  20. Rouwenhorst K.H.R., Van Der Ham A.G.J., Mul G., Kersten S. R.A. Islanded ammonia power systems: Technology review & conceptual process design // Renewable and Sustainable Energy Reviews. 2019. V. 114. ID109339. https://doi.org/10.1016/j.rser.2019.109339
  21. Kojima Y. A green ammonia a green ammonia economy. Proceedings of the 10th Annual NH. 2013. URL: https://www.ammoniaenergy.org/wp-content/uploads/2019/12/nh3fcx-yoshitsugu-kojima.pdf (дата обращения 18.09.2024).
  22. Yin S.F., Xu B.Q., Zhou X.P., Au C.T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications // Applied Catalysis A: General. 2004. V. 277. № 1–2. P. 1–9. https://doi.org/10.1016/j.apcata.2004.09.020
  23. Mukherjee S., Devaguptapu S.V., Sviripa A., Lund C.R.F., Wu G. Low-temperature ammonia decomposition catalysts for hydrogen generation // Applied Catalysis B: Environmental. 2018. V. 226. P. 162–181. https://doi.org/10.1016/j.apcatb.2017.12.039
  24. Morgan E., Manwell J., McGowan J. Wind-powered ammonia fuel production for remote islands: A case study // Renewable Energy. 2014. V. 72. P. 51–61. https://doi.org/10.1016/j.renene.2014.06.034
  25. Zamfirescu C., Dincer I. Ammonia as a green fuel and hydrogen source for vehicular applications // Fuel Processing Technology. 2009. V. 90. № 5. P. 729–737. https://doi.org/10.1016/j.fuproc.2009.02.004
  26. Lamb K.E., Dolan M.D., Kennedy D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification // Int. J. of Hydrogen Energy. 2019. V. 44. № 7. P. 3580–3593. https://doi.org/10.1016/j.ijhydene.2018.12.024
  27. Zheng W., Cotter T.P., Kaghazchi P., Jacob T., Frank B., Schlichte K., Zhang W., Su D. S., Schüth F., Schlögl R. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition // J. of Am. Chem. Soc. 2013. V. 135. № 9. P. 3458–3464. https://doi.org/10.1021/ja309734u
  28. Li X., Ji W., Zhao J., Wang S., Au C. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15 // J. of Catalysis. 2005. V. 236. № 2. P. 181–189. https://doi.org/10.1016/j.jcat.2005.09.030
  29. Fuel Properties Comparison. URL: https://afdc.energy.gov/ fuels/properties (дата обращения 18.09.2024).
  30. Hydrogen fuel quality — Product specification. Switzerland: International Organization for Standardization. 2019. URL: https://cdn.standards.iteh.ai/ samples/69539/4adc159648da4454a4b39d0b87ac348e/ISO-14687-2019.pdf.
  31. Malmali M., Le G., Hendrickson J., Prince J., McCormick A.V., Cussler E. L. Better absorbents for ammonia separation // ACS Sustainable Chemistry & Engineering. 2018. V. 6. № 5. P. 6536–6546. https://doi.org/10.1021/acssuschemeng.7b04684
  32. Hrtus D.J., Nowrin F.H., Lomas A., Fotsa Y., Malmali M. Achieving +95% ammonia purity by optimizing the absorption and desorption conditions of supported metal halides // ACS Sustainable Chemistry & Engineering. 2022. V. 10. № 1. P. 204–212. https://doi.org/10.1021/acssuschemeng.1c05668
  33. Bernardo G., Araújo T., Da Silva Lopes T., Sousa J., Mendes A. Recent advances in membrane technologies for hydrogen purification // Int. J. of Hydrogen Energy. 2020. V. 45. № 12. P. 7313–7338. https://doi.org/10.1016/j.ijhydene.2019.06.162
  34. Luberti M., Ahn H. Review of Polybed pressure swing adsorption for hydrogen purification // In. J. of Hydrogen Energy. 2022. V. 47. № 20. P. 10911–10933. https://doi.org/10.1016/j.ijhydene.2022.01.147
  35. Park Y., Kang J.-H., Moon D.-K., Jo Y.S., Lee C.-H. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture // Chem. Engineering J. 2021. V. 408. ID127299. https://doi.org/10.1016/j.cej.2020.127299
  36. Zhang N., Bénard P., Chahine R., Yang T., Xiao J. Optimization of pressure swing adsorption for hydrogen purification based on Box-Behnken design method // Int. J. of Hydrogen Energy. 2021. V. 46. № 7. P. 5403–5417. https://doi.org/10.1016/j.ijhydene.2020.11.045
  37. Katz M., Gruver G. A., Russell Kunz H. Regenerable ammonia scrubber // Patent US № 425 93021981
  38. Jones M.O., Royse D.M., Edwards P.P., David W.I.F. The structure and desorption properties of the ammines of the group II halides // Chem Physics. 2013. V. 427. P. 38–43. https://doi.org/10.1016/j.chemphys.2013.05.006
  39. Алентьев А.Ю., Рыжих В.Е., Сырцова Д.А., Белов Н. А. Полимерные материалы для решения актуальных задач мембранного газоразделения // Успехи химии. 2023. Т. 92. № 6. С. 1–22. https://doi.org/10.59761/RCR5083. [Alentiev A.Y., Ryzhikh V.E., Syrtsova D.A., Belov N.A. Polymer materials for solving actual problems of membrane gas separation // Uspehi himii. 2023. V. 92. № 6. ID5083. https://doi.org/10.59761/RCR5083]
  40. Баженов С. Д., Алентьев А. Ю., Шалыгин М. Г., Борисов И. Л., Анохина Т. С. Мембранное газоразделение: современное состояние и перспективы // Научный журнал Российского газового общества. 2024. Т. 1. № 43. С. 108–121.
  41. Liu C., Zhang X., Zhai J., Li X., Guo X., He G. Research progress and prospects on hydrogen separation membranes // Clean Energy. 2023. V. 7. № 1. Р. 217–241. https://doi.org/10.1093/ce/zkad014
  42. Cechetto V., Di Felice L., Gallucci F. Advances and Perspectives of H2 production from NH3 decomposition in membrane reactors // Energy & Fuels. 2023. V. 37. № 15. P. 10775–10798. https://doi.org/10.1021/acs.energyfuels.3c00760
  43. Словецкий Д.И. Сверхчистый водород // Химический журнал. 2010. Т. 1. № 2. С. 33–35.
  44. Collins J.P., Way J. D. Catalytic decomposition of ammonia in a membrane reactor // J. of Membrane Science. 1994. V. 96. № 3. P. 259–274. https://doi.org/10.1016/0376-7388(94)00138-3
  45. Paglieri S.N., Pal N.K., Dolan M.D., Kim S.-M., Chien W.-M., Lamb J., Chandra D., Hubbard K.M., Moore D.P. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni–Nb–Zr and Ni–Nb–Ta–Zr amorphous alloy membranes // J. of Membrane Science. 2011. V. 378. № 1–2. P. 42–50. https://doi.org/10.1016/j.memsci.2011.04.049
  46. Lundin S.-T.B., Yamaguchi T., Wolden C. A., Oyama S.T., Way J.D. The role (or lack thereof) of nitrogen or ammonia adsorption-induced hydrogen flux inhibition on palladium membrane performance // J. of Membrane Science. 2016. V. 514. P. 65–72. https://doi.org/10.1016/j.memsci.2016.04.048
  47. Dolan M., Dave N., Morpeth L., Donelson R., Liang D., Kellam M., Song S. Ni-based amorphous alloy membranes for hydrogen separation at 400°C // J. of Membrane Science. 2009. V. 326. № 2. P. 549–555. https://doi.org/10.1016/j.memsci.2008.10.030
  48. Kim S.-M., Chandra D., Pal N.K., Dolan M.D., Chien W.-M., Talekar A., Lamb J., Paglieri S.N., Flanagan T.B. Hydrogen permeability and crystallization kinetics in amorphous Ni–Nb–Zr alloys // Int. J. of Hydrogen Energy. 2012. V. 37. № 4. P. 3904–3913. https://doi.org/10.1016/j.ijhydene.2011.04.220
  49. Dolan M.D., Dave N.C., Ilyushechkin A.Y., Morpeth L.D., McLennan K. G. Composition and operation of hydrogen-selective amorphous alloy membranes // J. of Membrane Science. 2006. V. 285. № 1–2. P. 30–55. https://doi.org/10.1016/j.memsci.2006.09.014
  50. Nayebossadri S., Fletcher S., Speight J.D., Book D. Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes // J. of Membrane Science. 2016. V. 515. P. 22–28. https://doi.org/10.1016/j.memsci.2016.05.036
  51. Buxbaum R.E., Marker T.L. Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium // J. of Membrane Science. 1993. V. 85. № 1. P. 29–38. https://doi.org/10.1016/0376-7388(93)85004-G
  52. Kolachev B.A. Hydrogen embrittlement of nonferrous metals. Jerusalem: Israel Program for Scientific Translations. 1968.
  53. Li G., Kanezashi M., Lee H.R., Maeda M., Yoshioka T., Tsuru T. Preparation of a novel bimodal catalytic membrane reactor and its application to ammonia decomposition for COx-free hydrogen production // Int. J. of Hydrogen Energy. 2012. V. 37. № 17. P. 12105–12113. https://doi.org/10.1016/j.ijhydene.2012.05.132
  54. Jiang J., Dong Q., McCullough K., Lauterbach J., Li S., Yu M. Novel hollow fiber membrane reactor for high purity H2 generation from thermal catalytic NH3 decomposition // J. of Membrane Science. 2021. V. 629. ID119281. https://doi.org/10.1016/j.memsci.2021.119281
  55. Cechetto V., Di Felice L., Gutierrez Martinez R., Arratibel Plazaola A., Gallucci F. Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor // Int. J. of Hydrogen Energy. 2022. V. 47. № 49. P. 21220–21230. https://doi.org/10.1016/j.ijhydene.2022.04.240
  56. Freeman B.D. Basis of Permeability/Selectivity tradeoff relations in polymeric gas separation membranes // Macromolecules. 1999. V. 32. № 2. P. 375–380. https://doi.org/10.1021/ma9814548
  57. Signorini V., Askin A., Oldani C., Minelli M., Giacinti Baschetti M. Study on ammonia transport and separation in Aquivion® perfluoro sulfonated acid membranes // J. of Membrane Science. 2024. V. 697. ID122564. https://doi.org/10.1016/j.memsci.2024.122564
  58. Yang B., Bai L., Zeng S., Luo S., Liu L., Han J., Nie Y., Zhang X., Zhang S. NH3 separation membranes with self-assembled gas highways induced by protic ionic liquids // Chem. Engineering J. 2021. V. 421. ID127876. https://doi.org/10.1016/j.cej.2020.127876
  59. Zaripov I., Davletbaeva I., Faizulina Z., Davletbaev R., Gubaidullin A., Atlaskin A., Vorotyntsev I. Synthesis and characterization of novel nanoporous Gl-POSS-Branched polymeric gas separation membranes // Membranes. 2020. V. 10. № 5. ID110. https://doi.org/10.3390/membranes10050110
  60. Yang B., Bai L., Li T., Deng L., Liu L., Zeng S., Han J., Zhang X. Super selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranes // J. of Membrane Science. 2021. V. 628. ID119264. https://doi.org/10.1016/j.memsci.2021.119264
  61. Phillip W.A., Martono E., Chen L., Hillmyer M. A., Cussler E.L. Seeking an ammonia selective membrane based on nanostructured sulfonated block copolymers // J. of Membrane Science. 2009. V. 337. № 1–2. P. 39–46. https://doi.org/10.1016/j.memsci.2009.03.013
  62. Modigell M., Schumacher M., Teplyakov V.V., Zenkevich V. B. A membrane contactor for efficient CO2 removal in biohydrogen production // Desalination. 2008. V. 224. № 1–3. P. 186–190. https://doi.org/10.1016/j.desal.2007.02.092
  63. Udel® PSU Design Guide. URL: https://www.solvay.com/sites/g/files/srpend221/files/ 2018-08/Udel-PSU-Design-Guide_EN-v5.0_0_0.pdf.
  64. Petukhov D.I., Kan A.S., Chumakov A.P., Konovalov O.V., Valeev R.G., Eliseev A.A. MXene-based gas separation membranes with sorption type selectivity // J. of Membrane Science. 2021. V. 621. ID118994. https://doi.org/10.1016/j.memsci.2020.118994
  65. Pengilley C. Membranes for gas separation: PhD Thesis. Bath: University of Bath. 2016. 300 p.
  66. Braunisch H., Lenhart H. Schwefelwasserstoff- und Ammoniakdurchlässigkeit von Kunststoff- und Hydratcellulose-Folien // Kolloid-Zeitschrift. 1961. V. 177. № 1. P. 24–29. https://doi.org/10.1007/bf01521326
  67. Tikhomirov B.P., Hopfenberg H.B., Stannett V., Williams J.L. Permeation, Diffusion, and Solution of Gases and Water Vapor in Unplasticized Poly(Vinylchloride) // Die Makromolekulare Chemie. 1968. V. 118. № 1. P. 177–188. https://doi.org/10.1002/macp.1968.021180112
  68. Hsieh P. Y. Diffusibility and solubility of gases in ethylcellulose and nitrocellulose // Journal of Applied Polymer Science. 1963. V. 7. № 5. P. 1743–1756. https://doi.org/10.1002/app.1963.070070515
  69. Pez G.P., Carlin R.T., Laciak D.V., Sorensen J.C. Method for gas separation // Patent US № 4761164A. 1988.
  70. Stern S.A., Bhide B.D. Permeability of silicone polymers to ammonia and hydrogen sulfide // J. of Applied Polymer Science. 1989. V. 38. № 11. P. 2131–2147. https://doi.org/10.1002/app.1989.070381114
  71. Laciak D.V., Pez G.P., Burban P.M. Molten salt facilitated transport membranes. Part 2. Separation of ammonia from nitrogen and hydrogen at high temperatures // J. of Membrane Science. 1992. V. 65. № 1–2. P. 31–38. https://doi.org/10.1016/0376-7388(92)87049-4
  72. Pez G.P., Laciak D.V. Ammonia separation using semipermeable membranes // Patent US № 4762535A.1988.
  73. Makhloufi C., Roizard D., Favre E. Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation // J. of Membrane Science. 2013. V. 441. P. 63–72. https://doi.org/10.1016/j.memsci.2013.03.048
  74. Bitter J.H., Asadi Tashvigh A. Recent аdvances in polybenzimidazole membranes for hydrogen purification // Ind. & Engin. Chemistry Research. 2022. V. 61. № 18. P. 6125–6134. https://doi.org/10.1021/acs.iecr.2c00645
  75. Yampolskii Y. Polymeric gas separation membranes // Macromolecules. 2012. V. 45. № 8. P. 3298–3311. https://doi.org/10.1021/ma300213b
  76. Baker R.W. Membrane Technology and Applications. Paperbackshop uk import. 2012. 590 p.
  77. Ekiner O.M., Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation — spinning and properties // J. of Membrane Science. 1990. V. 53. № 3. P. 259–273. https://doi.org/10.1016/0376-7388(90)80018-H
  78. Myers A.W., Stannett V., Szwarc M. The permeability of polypropylene to gases and vapors // J. of Polymer Science. 1959. V. 35. № 128. P. 285–288. https://doi.org/10.1002/pol.1959.1203512830
  79. Brubaker D.W., Kammermeyer K. Separation of Gases by Plastic Membranes — Permeation Rates and Extent of Separation // Ind. & Engin. Chemistry. 1954. V. 46. № 4. P. 733–739. https://doi.org/10.1021/ie50532a037
  80. Michaels A.S., Bixler H.J. Flow of gases through polyethylene // J. of Polymer Science. 1961. V. 50. № 154. P. 413–439. https://doi.org/10.1002/pol.1961.1205015412
  81. Robeson L.M. The upper bound revisited // J. of Membrane Science. 2008. V. 320. № 1–2. P. 390–400. https://doi.org/10.1016/j.memsci.2008.04.030
  82. Yampolskii Yu., Belov N., Alentiev A. Perfluorinated polymers as materials of membranes for gas and vapor separation // J. of Membrane Science. 2020. V. 598. ID117779. https://doi.org/10.1016/j.memsci.2019.117779
  83. Makhloufi C., Belaissaoui B., Roizard D., Favre E. Interest of poly[bis(trifluoroethoxy)phosphazene] membranes for ammonia recovery–potential application in haber process // Procedia Engineering. 2012. V. 44. P. 143–146. https://doi.org/10.1016/j.proeng.2012.08.338
  84. Kulprathipanja S. Mixed matrix membrane development // Membrane Technology. 2002. V. 2002. № 4. P. 9–12. https://doi.org/10.1016/S0958–2118(02)80132-X
  85. Robb W.L. Thin silicone membranes-their permeation properties and some applications // Annals of the New-York Academy of Sciences. 1968. V. 146. № 1. P. 119–137. https://doi.org/10.1111/j.1749–6632.1968.tb20277.x
  86. Stern S.A., Shah V.M., Hardy B.J. Structure-permeability relationships in silicone polymers // J. of Polymer Science Part B: Polymer Physics. 1987. V. 25. № 6. P. 1263–1298. https://doi.org/10.1002/polb.1987.090250607
  87. Pan C.Y., Hadfield E.M. Permeation process for separating ammonia from a gas mixture // Patent US № 47938291988.
  88. Vorotyntsev I.V., Drozdov P.N., Karyakin N.V. Ammonia permeability of a cellulose acetate membrane // Inorganic Materials. 2006. V. 42. № 3. P. 231–235. https://doi.org/10.1134/S0020168506030034
  89. Raza A., Farrukh S., Hussain A. Synthesis, Characterization and NH3/N2 gas permeation study of nanocomposite membranes // J. of Polymers and the Environment. 2017. V. 25. № 1. P. 46–55. https://doi.org/10.1007/s10924-016-0783-6
  90. Waack R., Alex N.H., Frisch H.L., Stannett V., Szwarc M. Permeability of polymer films to gases and vapors // Ind. & Engin. Chemistry. 1955. V. 47. № 12. P. 2524–2527. https://doi.org/10.1021/ie50552a045.
  91. Browall W.R. Ultrathin polyetherimide membrane and gas separation process // Patent US № 41565971979
  92. Tricoli V., Cussler E. L. Ammonia selective hollow fibers // J. of Membrane Science. 1995. V. 104. № 1–2. P. 19–26. https://doi.org/10.1016/0376-7388(94)00208-G
  93. Bhown A., Cussler E.L. Mechanism for selective ammonia transport through poly(vinylammonium thiocyanate) membranes // J. of Am. Chem. Soc. 1991. V. 113. № 3. P. 742–749. https://doi.org/10.1021/ja00003a002
  94. Wakimoto K., Yan W.-W., Moriyama N., Nagasawa H., Kanezashi M., Tsuru T. Ammonia permeation of fluorinated sulfonic acid polymer/ceramic composite membranes // J. of Membrane Science. 2022. V. 658. ID120718. https://doi.org/10.1016/j.memsci.2022.120718
  95. Bikson B., Nelson J.K., Perrin J.E. Process for recovery of ammonia from an ammonia-containing gas mixtures.1991. Patent № US5009678A.
  96. He Y., Cussler E.L. Ammonia permeabilities of perfluorosulfonic membranes in various ionic forms // J. of Membrane Science. 1992. V. 68. № 1–2. P. 43–52. https://doi.org/10.1016/0376-7388(92)80148-D
  97. Timashev S.F., Vorobiev A.V., Kirichenko V.I., Popkov Yu.M., Volkov V.I., Shifrina R.R., Lyapunov A.Ya., Bondarenko A.G., Bobrova L.P. Specifics of highly selective ammonia transport through gas-separating membranes based on perfluorinated copolymer in the form of hollow fibers // J. of Membrane Science. 1991. V. 59. № 2. P. 117–131. https://doi.org/10.1016/S0376-7388(00)81178-3
  98. Ansaloni L., Dai Z., Ryan J.J., Mineart K.P., Yu Q., Saud K.T., Hägg M., Spontak R.J., Deng L. Solvent‐templated block ionomers for base‐ and acid‐gas separations: effect of humidity on ammonia and carbon dioxide permeation // Adv. Materials Interfaces. 2017. V. 4. № 22. ID1700854. https://doi.org/10.1002/admi.201700854
  99. Laciak D.V., Pez G.P. Ammonia separation using ion exchange polymeric membranes and sorbents // Patent US № 4758250A. 1988.
  100. Laciak D.V., Quinn R., Pez G.P., Appleby J.B., Puri P. S. Selective permeation of ammonia and carbon dioxide by novel membranes // Separation Science and Technology. 1990. V. 25. № 13–15. P. 1295–1305. https://doi.org/10.1080/01496399008050392
  101. Camus O., Perera S., Crittenden B., Van Delft Y.C., Meyer D.F., P.A.C. Pex P., Kumakiri I., Miachon S., Dalmon J., Tennison S., Chanaud P., Groensmit E., Nobel W. Ceramic membranes for ammonia recovery // AIChE J. 2006. V. 52. № 6. P. 2055–2065. https://doi.org/10.1002/aic.10800
  102. Duan X., Kim D., Narasimharao K., Al-Thabaiti S., Tsapatsis M. High-performance ammonia-selective MFI nanosheet membranes // Chem. Communications. 2021. V. 57. № 5. P. 580–582. https://doi.org/10.1039/D0CC07217F
  103. Padinjarekutt S., Li H., Ren S., Ramesh P., Zhou F., Li S., Belfort G., Yu M. Na+-gated nanochannel membrane for highly selective ammonia (NH3) separation in the Haber–Bosch process // Chem. Engineering J. 2023. V. 454. ID139998. https://doi.org/10.1016/j.cej.2022.139998
  104. Wei Q., Lucero J.M., Crawford J.M., Way J.D., Wolden C. A., Carreon M. A. Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes // J. of Membrane Science. 2021. V. 623. ID119078. https://doi.org/10.1016/j.memsci.2021.119078
  105. Kanezashi M., Yamamoto A., Yoshioka T., Tsuru T. Characteristics of ammonia permeation through porous silica membranes // AIChE J. 2010. V. 56. № 5. P. 1204–1212. https://doi.org/10.1002/aic.12059
  106. Fotou G.P., Lin Y.S., Pratsinis S.E. Hydrothermal stability of pure and modified microporous silica membranes // J. of Materials Science. 1995. V. 30. № 11. P. 2803–2808. https://doi.org/10.1007/BF00349647
  107. Adejumo M., Oleksy L., Liguori S. Innovative NH3 separation over immobilized molten salt membrane at high temperatures // Chemi. Engineering J. 2024. V. 479. ID147434. https://doi.org/10.1016/j.cej.2023.147434
  108. Komkova M.A., Sadilov I.S., Brotsman V.A., Petukhov D.I., Eliseev A.A. Facilitated transport of ammonia in ultra-thin Prussian Blue membranes with potential-tuned selectivity // J. of Membrane Science. 2021. V. 639. ID119714. https://doi.org/10.1016/j.memsci.2021.119714
  109. Yáñez M., Ortiz A., Gorri D., Ortiz I. Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams // Int. J. of Hydrogen Energy. 2021. V. 46. № 33. P. 17507–17521. https://doi.org/10.1016/j.ijhydene.2020.04.026
  110. Sidhikku Kandath Valappil R., Ghasem N., Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review // J. of Ind. and Engin. Chemistry. 2021. V. 98. P. 103–129. https://doi.org/10.1016/j.jiec.2021.03.030
  111. Новицкий Э.Г., Черняков И.Е., Гдалин С.И. Способ получения аммиака // Патент РФ № 7841541978.
  112. Fernández-Castro P., Ortiz A., Gorri D. Exploring the potential application of Matrimid® and ZIFs-based membranes for hydrogen recovery: a review // Polymers. 2021. V. 13. № 8. ID1292. https://doi.org/10.3390/polym13081292
  113. Galizia M., Bye K.P. Advances in organic solvent nanofiltration rely on physical chemistry and polymer chemistry // Frontiers in Chemistry. 2018. V. 6. ID511. https://doi.org/10.3389/fchem.2018.00511
  114. Shalygin M.G., Abramov S.M., Netrusov A.I., Teplyakov V. V. Membrane recovery of hydrogen from gaseous mixtures of biogenic and technogenic origin // Int.l J. of Hydrogen Energy. 2015. V. 40. № 8. P. 3438–3451. https://doi.org/10.1016/j.ijhydene.2014.12.078
  115. Shao L., Chung T., Goh S., Pramoda K. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance // J. of Membrane Science. 2005. ID S0376738805001432. https://doi.org/10.1016/j.memsci.2005.02.030
  116. Zhang C., Cao B., Li P. Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity // J. of Membrane Science. 2018. V. 546. P. 90–99. https://doi.org/10.1016/j.memsci.2017.10.015
  117. Matsui S., Nakagawa T. Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. II. Irradiation of membranes with high-pressure mercury lamp // J. of Applied Polymer Science. 1998. V. 67. № 1. P. 49–60. https://doi.org/10.1002/(sici)1097-4628(19980103) 67:1<49:: aid-app6>3.0.co;2-o
  118. Zhang M., Deng L., Xiang D., Cao B., Hosseini S.S., Li P. Approaches to suppress CO2-Induced plasticization of polyimide membranes in gas separation applications // Processes. 2019. V. 7. № 1. ID51. https://doi.org/10.3390/pr7010051
  119. Sanaeepur H., Ebadi Amooghin A., Bandehali S., Moghadassi A., Matsuura T., Van der Bruggen B. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering // Progress in Polymer Science. 2019. V. 91. P. 80–125. https://doi.org/10.1016/j.progpolymsci.2019.02.001
  120. Plaza-Lozano D., Comesaña-Gándara B., de la Viuda M., Seong J.G., Palacio L., Prádanos P., de la Campa J.G., Cuadrado P., Lee Y.M., Hernández A., Alvarez C., Lozano A.E. New aromatic polyamides and polyimides having an adamantane bulky group // Materials Today Communications. 2015. V. 5. P. 23–31. https://doi.org/10.1016/j.mtcomm.2015.10.001
  121. Bandyopadhyay P., Banerjee S. Spiro[fluorene-9,9'-xanthene] containing fluorinated poly(ether amide)s: Synthesis, characterization and gas transport properties // European Polymer J. 2015. V. 69. P. 140–155. https://doi.org/10.1016/j.eurpolymj.2015.06.001
  122. Luo S., Wiegand J.R., Kazanowska B., Doherty C.M., Konstas K., Hill A.J., Guo R. Finely tuning the free volume architecture in iptycene-containing polyimides for highly selective and fast hydrogen transport // Macromolecules. 2016. V. 49. № 9. P. 3395–3405. https://doi.org/10.1021/acs.macromol.6b00485
  123. Bisoi S., Mandal A.K., Singh A., Padmanabhan V., Banerjee S. Soluble, optically transparent polyamides with a phosphaphenanthrene skeleton: synthesis, characterization, gas permeation and molecular dynamics simulations // Polymer Chemistry. 2017. V. 8. № 29. P. 4220–4232. https://doi.org/10.1039/C7PY00687J
  124. Chatterjee R., Bisoi S., Kumar A.G., Padmanabhan V., Banerjee S. Polyimides Containing phosphaphenanthrene skeleton: gas-transport properties and molecular dynamics simulations // ACS Omega.2 018. V. 3. № 10. P. 13510–13523. https://doi.org/10.1021/acsomega.8b01364

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Permeability-selectivity diagrams for NH3-H2 (a) and NH3-N2 (b) pairs. The upper limits (dashed lines) are theoretical and were plotted according to [56, 57].

Download (26KB)
3. Fig. 2. Pairwise correlation of ammonia and hydrogen permeation coefficients (P(NH3)-P(H2)) for different membrane materials. The upper boundary was plotted against the following points: Nexar-20[Eim][NTf2] [58]; Aquivion C87-05 (80% moisture) [57]; POI [59]; Nexar/[Im][NTf2]-30 [60]; Nafion-117 [61]. The lower boundary was plotted against the following points: tetrabromopolycarbonate [62]; polysulfone [63]; polytrimethylsilylpropyne [64]; hexafluoropolysulfone [62]; MFI zeolite on ceramic tube (MCT0.5) [65].

Download (12KB)
4. Fig. 3. Pairwise correlation of ammonia and nitrogen permeation coefficients (P(NH3)-P(N2)) for different membrane materials. The upper boundary was plotted against the following points: polyvinyl chloride [66, 67]; nitrocellulose [68, 69]; poly(methyloctylsiloxane) [70]; immobilised ZnCl2 melt [71, 72]; Nafion-117 [61]. The lower boundary was plotted against the following points: fluoroethylene propylene (FEP) [73]; Hyflon AD40X [73]; Hyflon AD60X [73]; Teflon AF2400 [73]; MFI zeolite on ceramic tube (MCT0.5) [65].

Download (21KB)
5. Fig. 4. Position of ionomers, polyvinylammonium chloride (PVAC) and polyvinylammonium thiocyanate (PVAT) on the permeability-selectivity coefficient diagram for NH3-H2 pair.

Download (15KB)

Copyright (c) 2024 Russian Academy of Sciences