Разделение промышленных аммиаксодержащих газовых смесей с помощью полимерных мембран
- Authors: Рыжих В.Е.1, Белов Н.А.1, Новицкий Э.Г.1, Анохина Т.С.1, Banerjee S.2, Баженов С.Д.1
-
Affiliations:
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
- Indian Institute of Technology
- Issue: Vol 64, No 6 (2024)
- Pages: 557-581
- Section: Articles
- URL: https://ter-arkhiv.ru/0028-2421/article/view/677412
- DOI: https://doi.org/10.31857/S0028242124060032
- EDN: https://elibrary.ru/MFPVHK
- ID: 677412
Cite item
Abstract
Развитие аммиачной промышленности и направления применения аммиака как перспективного носителя водорода невозможно без исследований технологий разделения аммиак-содержащих газовых смесей (NH3–H2–N2). Мембранное газоразделение — перспективное направление для решения данной задачи. В настоящем обзоре представлена информация по существующим разработкам в области водород- и аммиак-селективных газоразделительных мембран, с фокусом на синтетических полимерных материалах. Рассмотрен широкий спектр материалов различных типов (иономерные материалы, полиолефины, поликонденсационные материалы, фторсодержащие полимеры, силоксановые полимеры, гибридные мембраны), представлены сведения по коэффициентам проницаемости NH3, H2, N2, а также по идеальным селективностям пар этих газов. Продемонстрировано, что наиболее удовлетворительными транспортными и разделительными характеристиками обладают иономерные материалы, а также мембраны на основе новых типов полиимидов.
Keywords
Full Text

About the authors
Виктория Евгеньевна Рыжих
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0002-1338-1231
н. с., к. х. н.
Russian Federation, Москва, 119991Николай Александрович Белов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0001-5118-3909
с. н. с., к. х. н.
Russian Federation, Москва, 119991Эдуард Григорьевич Новицкий
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0001-9009-2073
в. н. с., к. х. н.
Russian Federation, Москва, 119991Татьяна Сергеевна Анохина
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: sbazhenov@ips.ac.ru
ORCID iD: 0009-0001-6154-3709
и. о. зав. лаб., к. х. н.
Russian Federation, Москва, 119991Susanta Banerjee
Indian Institute of Technology
Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0002-0358-3198
Professor (HAG) & Institute Chair Professor, PhD
India, Kharagpur, West Bengal, 721302Степан Дмитриевич Баженов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Author for correspondence.
Email: sbazhenov@ips.ac.ru
ORCID iD: 0000-0002-2010-5294
зав. лаб., к. х. н.
Russian Federation, Москва, 119991References
- Ibarrola Rivas M.J. Estimating Future Global Needs for Nitrogen Based on Regional Changes of Food Demand // Agricultural Research & Technology: Open Access J. 2017. V. 8. № 2. ID555635. https://doi.org/10.19080/ARTOAJ.2017.08.555735
- Wan Z., Tao Y., Shao J., Zhang Y., You H. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells // Energy Conversion and Management. 2021. V. 228. ID113729. https://doi.org/10.1016/j.enconman.2020.113729
- Lin B., Nowrin F.H., Rosenthal J.J., Bhown A.S., Malmali M. Perspective on Intensification of haberbosch to enable ammonia production under milder conditions // ACS Sustainable Chemistry & Engineering. 2023. V. 11. № 27. P. 9880–9899. https://doi.org/10.1021/acssuschemeng.2c06711
- Chen H., Cong T. N., Yang W., Tan C., Li Y., Ding Y. Progress in electrical energy storage system: A critical review // Progress in Natural Science. 2009. V. 19. № 3. P. 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014
- Wilkinson I. Green Ammonia // Siemens AG. 2017. URL: https://warwick.ac.uk/fac/sci/eng/research/grouplist/electricalpower/images/newsnevents/hies2017/presentations/hies2017_siemens_ianwilkinson.pdf (дата обращения 18.09.2024).
- International energy agency Global Hydrogen Review. 2023. URL: https://iea.blob.core.windows.net/assets/8d434960-a85c-4c02-ad96–77794aaa175d/Global HydrogenReview2023.pdf (дата обращения 18.09.2024).
- Якубсон К.И. Перспективы производства и использования водорода как одно из направлений развития низкоуглеродной экономики в Российской Федерации (обзор) // Журн. прикладной химии. 2020. Т. 93. № 12. С. 1675–1695. https://doi.org/10.31857/S0044461820120014. [Yakubson K.I. Prospects for production and use of hydrogen as one of directions of the development of low-carbon economy in the Russian Federation // Russ. J. of Appl. Chemistry. 2020. V. 93. № 12. P. 1775–1795. https://doi.org/10.31857/S0044461820120014]
- Singla S., Shetti N.P., Basu S., Mondal K., Aminabhavi T. M. Hydrogen production technologies — Membrane based separation, storage and challenges // J. of Environmental Management. 2022. V. 302. ID113963. https://doi.org/10.1016/j.jenvman.2021.113963
- Teichmann D., Arlt W., Wasserscheid P. Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy // Int. J. of Hydrogen Energy. 2012. V. 37. № 23. P. 18118–18132. https://doi.org/10.1016/j.ijhydene.2012.08.066
- Wijayanta A.T., Oda T., Purnomo C.W., Kashiwagi T., Aziz M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review // Int. J. of Hydrogen Energy. 2019. V. 44. № 29. P. 15026–15044. https://doi.org/10.1016/j.ijhydene.2019.04.112
- Алдошин С.М., Максимов А.Л., Арутюнов В.С., Седов И.В. Получение, хранение и применение водорода. Новые идеи и перспективные разработки. М.: РАН. 2023. 384 с.
- Sartbaeva A., Kuznetsov V.L., Wells S.A., Edwards P.P. Hydrogen nexus in a sustainable energy future // Energy & Environmental Science. 2008. V. 1. № 1. P. 79–85. https://doi.org/10.1039/b810104n
- Pradhan A.U., Shukla A., Pande J.V., Karmarkar S., Biniwale R.B. A feasibility analysis of hydrogen delivery system using liquid organic hydrides // Int. J. of Hydrogen Energy. 2011. V. 36. № 1. P. 680–688. https://doi.org/10.1016/j.ijhydene.2010.09.054
- Valera-Medina A., Xiao H., Owen-Jones M., David W.I.F., Bowen P.J. Ammonia for power // Progress in energy and combustion science. 2018. V. 69. P. 63–102. https://doi.org/10.1016/j.pecs.2018.07.001
- Aziz M., Oda T., Morihara A., Kashiwagi T. Combined nitrogen production, ammonia synthesis, and power generation for efficient hydrogen storage // Energy Procedia. 2017. V. 143. P. 674–679. https://doi.org/10.1016/j.egypro.2017.12.745
- Bellamkonda S., Thangavel N., Hafeez H. Y., Neppolian B., Ranga Rao G. Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: An efficient non-noble metal photocatalyst for water splitting // Catalysis Today. 2019. V. 321–322. P. 120–127. https://doi.org/10.1016/j.cattod.2017.10.023
- Giddey S., Badwal S.P.S., Munnings C., Dolan M. Ammonia as a renewable energy transportation media // ACS Sustainable Chemistry & Engineering. 2017. V. 5. № 11. P. 10231–10239. https://doi.org/10.1021/acssuschemeng.7b02219
- Klerke A., Christensen C. H., Nørskov J. K., Vegge T. Ammonia for hydrogen storage: challenges and opportunities // J. of Materials Chemistry. 2008. V. 18. № 20. P. 2304–2310. https://doi.org/10.1039/b720020j
- Zamfirescu C., Dincer I. Using ammonia as a sustainable fuel // J. of Power Sources. 2008. V. 185. № 1. P. 459–465. https://doi.org/10.1016/j.jpowsour.2008.02.097
- Rouwenhorst K.H.R., Van Der Ham A.G.J., Mul G., Kersten S. R.A. Islanded ammonia power systems: Technology review & conceptual process design // Renewable and Sustainable Energy Reviews. 2019. V. 114. ID109339. https://doi.org/10.1016/j.rser.2019.109339
- Kojima Y. A green ammonia a green ammonia economy. Proceedings of the 10th Annual NH. 2013. URL: https://www.ammoniaenergy.org/wp-content/uploads/2019/12/nh3fcx-yoshitsugu-kojima.pdf (дата обращения 18.09.2024).
- Yin S.F., Xu B.Q., Zhou X.P., Au C.T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications // Applied Catalysis A: General. 2004. V. 277. № 1–2. P. 1–9. https://doi.org/10.1016/j.apcata.2004.09.020
- Mukherjee S., Devaguptapu S.V., Sviripa A., Lund C.R.F., Wu G. Low-temperature ammonia decomposition catalysts for hydrogen generation // Applied Catalysis B: Environmental. 2018. V. 226. P. 162–181. https://doi.org/10.1016/j.apcatb.2017.12.039
- Morgan E., Manwell J., McGowan J. Wind-powered ammonia fuel production for remote islands: A case study // Renewable Energy. 2014. V. 72. P. 51–61. https://doi.org/10.1016/j.renene.2014.06.034
- Zamfirescu C., Dincer I. Ammonia as a green fuel and hydrogen source for vehicular applications // Fuel Processing Technology. 2009. V. 90. № 5. P. 729–737. https://doi.org/10.1016/j.fuproc.2009.02.004
- Lamb K.E., Dolan M.D., Kennedy D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification // Int. J. of Hydrogen Energy. 2019. V. 44. № 7. P. 3580–3593. https://doi.org/10.1016/j.ijhydene.2018.12.024
- Zheng W., Cotter T.P., Kaghazchi P., Jacob T., Frank B., Schlichte K., Zhang W., Su D. S., Schüth F., Schlögl R. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition // J. of Am. Chem. Soc. 2013. V. 135. № 9. P. 3458–3464. https://doi.org/10.1021/ja309734u
- Li X., Ji W., Zhao J., Wang S., Au C. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15 // J. of Catalysis. 2005. V. 236. № 2. P. 181–189. https://doi.org/10.1016/j.jcat.2005.09.030
- Fuel Properties Comparison. URL: https://afdc.energy.gov/ fuels/properties (дата обращения 18.09.2024).
- Hydrogen fuel quality — Product specification. Switzerland: International Organization for Standardization. 2019. URL: https://cdn.standards.iteh.ai/ samples/69539/4adc159648da4454a4b39d0b87ac348e/ISO-14687-2019.pdf.
- Malmali M., Le G., Hendrickson J., Prince J., McCormick A.V., Cussler E. L. Better absorbents for ammonia separation // ACS Sustainable Chemistry & Engineering. 2018. V. 6. № 5. P. 6536–6546. https://doi.org/10.1021/acssuschemeng.7b04684
- Hrtus D.J., Nowrin F.H., Lomas A., Fotsa Y., Malmali M. Achieving +95% ammonia purity by optimizing the absorption and desorption conditions of supported metal halides // ACS Sustainable Chemistry & Engineering. 2022. V. 10. № 1. P. 204–212. https://doi.org/10.1021/acssuschemeng.1c05668
- Bernardo G., Araújo T., Da Silva Lopes T., Sousa J., Mendes A. Recent advances in membrane technologies for hydrogen purification // Int. J. of Hydrogen Energy. 2020. V. 45. № 12. P. 7313–7338. https://doi.org/10.1016/j.ijhydene.2019.06.162
- Luberti M., Ahn H. Review of Polybed pressure swing adsorption for hydrogen purification // In. J. of Hydrogen Energy. 2022. V. 47. № 20. P. 10911–10933. https://doi.org/10.1016/j.ijhydene.2022.01.147
- Park Y., Kang J.-H., Moon D.-K., Jo Y.S., Lee C.-H. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture // Chem. Engineering J. 2021. V. 408. ID127299. https://doi.org/10.1016/j.cej.2020.127299
- Zhang N., Bénard P., Chahine R., Yang T., Xiao J. Optimization of pressure swing adsorption for hydrogen purification based on Box-Behnken design method // Int. J. of Hydrogen Energy. 2021. V. 46. № 7. P. 5403–5417. https://doi.org/10.1016/j.ijhydene.2020.11.045
- Katz M., Gruver G. A., Russell Kunz H. Regenerable ammonia scrubber // Patent US № 425 93021981
- Jones M.O., Royse D.M., Edwards P.P., David W.I.F. The structure and desorption properties of the ammines of the group II halides // Chem Physics. 2013. V. 427. P. 38–43. https://doi.org/10.1016/j.chemphys.2013.05.006
- Алентьев А.Ю., Рыжих В.Е., Сырцова Д.А., Белов Н. А. Полимерные материалы для решения актуальных задач мембранного газоразделения // Успехи химии. 2023. Т. 92. № 6. С. 1–22. https://doi.org/10.59761/RCR5083. [Alentiev A.Y., Ryzhikh V.E., Syrtsova D.A., Belov N.A. Polymer materials for solving actual problems of membrane gas separation // Uspehi himii. 2023. V. 92. № 6. ID5083. https://doi.org/10.59761/RCR5083]
- Баженов С. Д., Алентьев А. Ю., Шалыгин М. Г., Борисов И. Л., Анохина Т. С. Мембранное газоразделение: современное состояние и перспективы // Научный журнал Российского газового общества. 2024. Т. 1. № 43. С. 108–121.
- Liu C., Zhang X., Zhai J., Li X., Guo X., He G. Research progress and prospects on hydrogen separation membranes // Clean Energy. 2023. V. 7. № 1. Р. 217–241. https://doi.org/10.1093/ce/zkad014
- Cechetto V., Di Felice L., Gallucci F. Advances and Perspectives of H2 production from NH3 decomposition in membrane reactors // Energy & Fuels. 2023. V. 37. № 15. P. 10775–10798. https://doi.org/10.1021/acs.energyfuels.3c00760
- Словецкий Д.И. Сверхчистый водород // Химический журнал. 2010. Т. 1. № 2. С. 33–35.
- Collins J.P., Way J. D. Catalytic decomposition of ammonia in a membrane reactor // J. of Membrane Science. 1994. V. 96. № 3. P. 259–274. https://doi.org/10.1016/0376-7388(94)00138-3
- Paglieri S.N., Pal N.K., Dolan M.D., Kim S.-M., Chien W.-M., Lamb J., Chandra D., Hubbard K.M., Moore D.P. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni–Nb–Zr and Ni–Nb–Ta–Zr amorphous alloy membranes // J. of Membrane Science. 2011. V. 378. № 1–2. P. 42–50. https://doi.org/10.1016/j.memsci.2011.04.049
- Lundin S.-T.B., Yamaguchi T., Wolden C. A., Oyama S.T., Way J.D. The role (or lack thereof) of nitrogen or ammonia adsorption-induced hydrogen flux inhibition on palladium membrane performance // J. of Membrane Science. 2016. V. 514. P. 65–72. https://doi.org/10.1016/j.memsci.2016.04.048
- Dolan M., Dave N., Morpeth L., Donelson R., Liang D., Kellam M., Song S. Ni-based amorphous alloy membranes for hydrogen separation at 400°C // J. of Membrane Science. 2009. V. 326. № 2. P. 549–555. https://doi.org/10.1016/j.memsci.2008.10.030
- Kim S.-M., Chandra D., Pal N.K., Dolan M.D., Chien W.-M., Talekar A., Lamb J., Paglieri S.N., Flanagan T.B. Hydrogen permeability and crystallization kinetics in amorphous Ni–Nb–Zr alloys // Int. J. of Hydrogen Energy. 2012. V. 37. № 4. P. 3904–3913. https://doi.org/10.1016/j.ijhydene.2011.04.220
- Dolan M.D., Dave N.C., Ilyushechkin A.Y., Morpeth L.D., McLennan K. G. Composition and operation of hydrogen-selective amorphous alloy membranes // J. of Membrane Science. 2006. V. 285. № 1–2. P. 30–55. https://doi.org/10.1016/j.memsci.2006.09.014
- Nayebossadri S., Fletcher S., Speight J.D., Book D. Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes // J. of Membrane Science. 2016. V. 515. P. 22–28. https://doi.org/10.1016/j.memsci.2016.05.036
- Buxbaum R.E., Marker T.L. Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium // J. of Membrane Science. 1993. V. 85. № 1. P. 29–38. https://doi.org/10.1016/0376-7388(93)85004-G
- Kolachev B.A. Hydrogen embrittlement of nonferrous metals. Jerusalem: Israel Program for Scientific Translations. 1968.
- Li G., Kanezashi M., Lee H.R., Maeda M., Yoshioka T., Tsuru T. Preparation of a novel bimodal catalytic membrane reactor and its application to ammonia decomposition for COx-free hydrogen production // Int. J. of Hydrogen Energy. 2012. V. 37. № 17. P. 12105–12113. https://doi.org/10.1016/j.ijhydene.2012.05.132
- Jiang J., Dong Q., McCullough K., Lauterbach J., Li S., Yu M. Novel hollow fiber membrane reactor for high purity H2 generation from thermal catalytic NH3 decomposition // J. of Membrane Science. 2021. V. 629. ID119281. https://doi.org/10.1016/j.memsci.2021.119281
- Cechetto V., Di Felice L., Gutierrez Martinez R., Arratibel Plazaola A., Gallucci F. Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor // Int. J. of Hydrogen Energy. 2022. V. 47. № 49. P. 21220–21230. https://doi.org/10.1016/j.ijhydene.2022.04.240
- Freeman B.D. Basis of Permeability/Selectivity tradeoff relations in polymeric gas separation membranes // Macromolecules. 1999. V. 32. № 2. P. 375–380. https://doi.org/10.1021/ma9814548
- Signorini V., Askin A., Oldani C., Minelli M., Giacinti Baschetti M. Study on ammonia transport and separation in Aquivion® perfluoro sulfonated acid membranes // J. of Membrane Science. 2024. V. 697. ID122564. https://doi.org/10.1016/j.memsci.2024.122564
- Yang B., Bai L., Zeng S., Luo S., Liu L., Han J., Nie Y., Zhang X., Zhang S. NH3 separation membranes with self-assembled gas highways induced by protic ionic liquids // Chem. Engineering J. 2021. V. 421. ID127876. https://doi.org/10.1016/j.cej.2020.127876
- Zaripov I., Davletbaeva I., Faizulina Z., Davletbaev R., Gubaidullin A., Atlaskin A., Vorotyntsev I. Synthesis and characterization of novel nanoporous Gl-POSS-Branched polymeric gas separation membranes // Membranes. 2020. V. 10. № 5. ID110. https://doi.org/10.3390/membranes10050110
- Yang B., Bai L., Li T., Deng L., Liu L., Zeng S., Han J., Zhang X. Super selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranes // J. of Membrane Science. 2021. V. 628. ID119264. https://doi.org/10.1016/j.memsci.2021.119264
- Phillip W.A., Martono E., Chen L., Hillmyer M. A., Cussler E.L. Seeking an ammonia selective membrane based on nanostructured sulfonated block copolymers // J. of Membrane Science. 2009. V. 337. № 1–2. P. 39–46. https://doi.org/10.1016/j.memsci.2009.03.013
- Modigell M., Schumacher M., Teplyakov V.V., Zenkevich V. B. A membrane contactor for efficient CO2 removal in biohydrogen production // Desalination. 2008. V. 224. № 1–3. P. 186–190. https://doi.org/10.1016/j.desal.2007.02.092
- Udel® PSU Design Guide. URL: https://www.solvay.com/sites/g/files/srpend221/files/ 2018-08/Udel-PSU-Design-Guide_EN-v5.0_0_0.pdf.
- Petukhov D.I., Kan A.S., Chumakov A.P., Konovalov O.V., Valeev R.G., Eliseev A.A. MXene-based gas separation membranes with sorption type selectivity // J. of Membrane Science. 2021. V. 621. ID118994. https://doi.org/10.1016/j.memsci.2020.118994
- Pengilley C. Membranes for gas separation: PhD Thesis. Bath: University of Bath. 2016. 300 p.
- Braunisch H., Lenhart H. Schwefelwasserstoff- und Ammoniakdurchlässigkeit von Kunststoff- und Hydratcellulose-Folien // Kolloid-Zeitschrift. 1961. V. 177. № 1. P. 24–29. https://doi.org/10.1007/bf01521326
- Tikhomirov B.P., Hopfenberg H.B., Stannett V., Williams J.L. Permeation, Diffusion, and Solution of Gases and Water Vapor in Unplasticized Poly(Vinylchloride) // Die Makromolekulare Chemie. 1968. V. 118. № 1. P. 177–188. https://doi.org/10.1002/macp.1968.021180112
- Hsieh P. Y. Diffusibility and solubility of gases in ethylcellulose and nitrocellulose // Journal of Applied Polymer Science. 1963. V. 7. № 5. P. 1743–1756. https://doi.org/10.1002/app.1963.070070515
- Pez G.P., Carlin R.T., Laciak D.V., Sorensen J.C. Method for gas separation // Patent US № 4761164A. 1988.
- Stern S.A., Bhide B.D. Permeability of silicone polymers to ammonia and hydrogen sulfide // J. of Applied Polymer Science. 1989. V. 38. № 11. P. 2131–2147. https://doi.org/10.1002/app.1989.070381114
- Laciak D.V., Pez G.P., Burban P.M. Molten salt facilitated transport membranes. Part 2. Separation of ammonia from nitrogen and hydrogen at high temperatures // J. of Membrane Science. 1992. V. 65. № 1–2. P. 31–38. https://doi.org/10.1016/0376-7388(92)87049-4
- Pez G.P., Laciak D.V. Ammonia separation using semipermeable membranes // Patent US № 4762535A.1988.
- Makhloufi C., Roizard D., Favre E. Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation // J. of Membrane Science. 2013. V. 441. P. 63–72. https://doi.org/10.1016/j.memsci.2013.03.048
- Bitter J.H., Asadi Tashvigh A. Recent аdvances in polybenzimidazole membranes for hydrogen purification // Ind. & Engin. Chemistry Research. 2022. V. 61. № 18. P. 6125–6134. https://doi.org/10.1021/acs.iecr.2c00645
- Yampolskii Y. Polymeric gas separation membranes // Macromolecules. 2012. V. 45. № 8. P. 3298–3311. https://doi.org/10.1021/ma300213b
- Baker R.W. Membrane Technology and Applications. Paperbackshop uk import. 2012. 590 p.
- Ekiner O.M., Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation — spinning and properties // J. of Membrane Science. 1990. V. 53. № 3. P. 259–273. https://doi.org/10.1016/0376-7388(90)80018-H
- Myers A.W., Stannett V., Szwarc M. The permeability of polypropylene to gases and vapors // J. of Polymer Science. 1959. V. 35. № 128. P. 285–288. https://doi.org/10.1002/pol.1959.1203512830
- Brubaker D.W., Kammermeyer K. Separation of Gases by Plastic Membranes — Permeation Rates and Extent of Separation // Ind. & Engin. Chemistry. 1954. V. 46. № 4. P. 733–739. https://doi.org/10.1021/ie50532a037
- Michaels A.S., Bixler H.J. Flow of gases through polyethylene // J. of Polymer Science. 1961. V. 50. № 154. P. 413–439. https://doi.org/10.1002/pol.1961.1205015412
- Robeson L.M. The upper bound revisited // J. of Membrane Science. 2008. V. 320. № 1–2. P. 390–400. https://doi.org/10.1016/j.memsci.2008.04.030
- Yampolskii Yu., Belov N., Alentiev A. Perfluorinated polymers as materials of membranes for gas and vapor separation // J. of Membrane Science. 2020. V. 598. ID117779. https://doi.org/10.1016/j.memsci.2019.117779
- Makhloufi C., Belaissaoui B., Roizard D., Favre E. Interest of poly[bis(trifluoroethoxy)phosphazene] membranes for ammonia recovery–potential application in haber process // Procedia Engineering. 2012. V. 44. P. 143–146. https://doi.org/10.1016/j.proeng.2012.08.338
- Kulprathipanja S. Mixed matrix membrane development // Membrane Technology. 2002. V. 2002. № 4. P. 9–12. https://doi.org/10.1016/S0958–2118(02)80132-X
- Robb W.L. Thin silicone membranes-their permeation properties and some applications // Annals of the New-York Academy of Sciences. 1968. V. 146. № 1. P. 119–137. https://doi.org/10.1111/j.1749–6632.1968.tb20277.x
- Stern S.A., Shah V.M., Hardy B.J. Structure-permeability relationships in silicone polymers // J. of Polymer Science Part B: Polymer Physics. 1987. V. 25. № 6. P. 1263–1298. https://doi.org/10.1002/polb.1987.090250607
- Pan C.Y., Hadfield E.M. Permeation process for separating ammonia from a gas mixture // Patent US № 47938291988.
- Vorotyntsev I.V., Drozdov P.N., Karyakin N.V. Ammonia permeability of a cellulose acetate membrane // Inorganic Materials. 2006. V. 42. № 3. P. 231–235. https://doi.org/10.1134/S0020168506030034
- Raza A., Farrukh S., Hussain A. Synthesis, Characterization and NH3/N2 gas permeation study of nanocomposite membranes // J. of Polymers and the Environment. 2017. V. 25. № 1. P. 46–55. https://doi.org/10.1007/s10924-016-0783-6
- Waack R., Alex N.H., Frisch H.L., Stannett V., Szwarc M. Permeability of polymer films to gases and vapors // Ind. & Engin. Chemistry. 1955. V. 47. № 12. P. 2524–2527. https://doi.org/10.1021/ie50552a045.
- Browall W.R. Ultrathin polyetherimide membrane and gas separation process // Patent US № 41565971979
- Tricoli V., Cussler E. L. Ammonia selective hollow fibers // J. of Membrane Science. 1995. V. 104. № 1–2. P. 19–26. https://doi.org/10.1016/0376-7388(94)00208-G
- Bhown A., Cussler E.L. Mechanism for selective ammonia transport through poly(vinylammonium thiocyanate) membranes // J. of Am. Chem. Soc. 1991. V. 113. № 3. P. 742–749. https://doi.org/10.1021/ja00003a002
- Wakimoto K., Yan W.-W., Moriyama N., Nagasawa H., Kanezashi M., Tsuru T. Ammonia permeation of fluorinated sulfonic acid polymer/ceramic composite membranes // J. of Membrane Science. 2022. V. 658. ID120718. https://doi.org/10.1016/j.memsci.2022.120718
- Bikson B., Nelson J.K., Perrin J.E. Process for recovery of ammonia from an ammonia-containing gas mixtures.1991. Patent № US5009678A.
- He Y., Cussler E.L. Ammonia permeabilities of perfluorosulfonic membranes in various ionic forms // J. of Membrane Science. 1992. V. 68. № 1–2. P. 43–52. https://doi.org/10.1016/0376-7388(92)80148-D
- Timashev S.F., Vorobiev A.V., Kirichenko V.I., Popkov Yu.M., Volkov V.I., Shifrina R.R., Lyapunov A.Ya., Bondarenko A.G., Bobrova L.P. Specifics of highly selective ammonia transport through gas-separating membranes based on perfluorinated copolymer in the form of hollow fibers // J. of Membrane Science. 1991. V. 59. № 2. P. 117–131. https://doi.org/10.1016/S0376-7388(00)81178-3
- Ansaloni L., Dai Z., Ryan J.J., Mineart K.P., Yu Q., Saud K.T., Hägg M., Spontak R.J., Deng L. Solvent‐templated block ionomers for base‐ and acid‐gas separations: effect of humidity on ammonia and carbon dioxide permeation // Adv. Materials Interfaces. 2017. V. 4. № 22. ID1700854. https://doi.org/10.1002/admi.201700854
- Laciak D.V., Pez G.P. Ammonia separation using ion exchange polymeric membranes and sorbents // Patent US № 4758250A. 1988.
- Laciak D.V., Quinn R., Pez G.P., Appleby J.B., Puri P. S. Selective permeation of ammonia and carbon dioxide by novel membranes // Separation Science and Technology. 1990. V. 25. № 13–15. P. 1295–1305. https://doi.org/10.1080/01496399008050392
- Camus O., Perera S., Crittenden B., Van Delft Y.C., Meyer D.F., P.A.C. Pex P., Kumakiri I., Miachon S., Dalmon J., Tennison S., Chanaud P., Groensmit E., Nobel W. Ceramic membranes for ammonia recovery // AIChE J. 2006. V. 52. № 6. P. 2055–2065. https://doi.org/10.1002/aic.10800
- Duan X., Kim D., Narasimharao K., Al-Thabaiti S., Tsapatsis M. High-performance ammonia-selective MFI nanosheet membranes // Chem. Communications. 2021. V. 57. № 5. P. 580–582. https://doi.org/10.1039/D0CC07217F
- Padinjarekutt S., Li H., Ren S., Ramesh P., Zhou F., Li S., Belfort G., Yu M. Na+-gated nanochannel membrane for highly selective ammonia (NH3) separation in the Haber–Bosch process // Chem. Engineering J. 2023. V. 454. ID139998. https://doi.org/10.1016/j.cej.2022.139998
- Wei Q., Lucero J.M., Crawford J.M., Way J.D., Wolden C. A., Carreon M. A. Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes // J. of Membrane Science. 2021. V. 623. ID119078. https://doi.org/10.1016/j.memsci.2021.119078
- Kanezashi M., Yamamoto A., Yoshioka T., Tsuru T. Characteristics of ammonia permeation through porous silica membranes // AIChE J. 2010. V. 56. № 5. P. 1204–1212. https://doi.org/10.1002/aic.12059
- Fotou G.P., Lin Y.S., Pratsinis S.E. Hydrothermal stability of pure and modified microporous silica membranes // J. of Materials Science. 1995. V. 30. № 11. P. 2803–2808. https://doi.org/10.1007/BF00349647
- Adejumo M., Oleksy L., Liguori S. Innovative NH3 separation over immobilized molten salt membrane at high temperatures // Chemi. Engineering J. 2024. V. 479. ID147434. https://doi.org/10.1016/j.cej.2023.147434
- Komkova M.A., Sadilov I.S., Brotsman V.A., Petukhov D.I., Eliseev A.A. Facilitated transport of ammonia in ultra-thin Prussian Blue membranes with potential-tuned selectivity // J. of Membrane Science. 2021. V. 639. ID119714. https://doi.org/10.1016/j.memsci.2021.119714
- Yáñez M., Ortiz A., Gorri D., Ortiz I. Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams // Int. J. of Hydrogen Energy. 2021. V. 46. № 33. P. 17507–17521. https://doi.org/10.1016/j.ijhydene.2020.04.026
- Sidhikku Kandath Valappil R., Ghasem N., Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review // J. of Ind. and Engin. Chemistry. 2021. V. 98. P. 103–129. https://doi.org/10.1016/j.jiec.2021.03.030
- Новицкий Э.Г., Черняков И.Е., Гдалин С.И. Способ получения аммиака // Патент РФ № 7841541978.
- Fernández-Castro P., Ortiz A., Gorri D. Exploring the potential application of Matrimid® and ZIFs-based membranes for hydrogen recovery: a review // Polymers. 2021. V. 13. № 8. ID1292. https://doi.org/10.3390/polym13081292
- Galizia M., Bye K.P. Advances in organic solvent nanofiltration rely on physical chemistry and polymer chemistry // Frontiers in Chemistry. 2018. V. 6. ID511. https://doi.org/10.3389/fchem.2018.00511
- Shalygin M.G., Abramov S.M., Netrusov A.I., Teplyakov V. V. Membrane recovery of hydrogen from gaseous mixtures of biogenic and technogenic origin // Int.l J. of Hydrogen Energy. 2015. V. 40. № 8. P. 3438–3451. https://doi.org/10.1016/j.ijhydene.2014.12.078
- Shao L., Chung T., Goh S., Pramoda K. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance // J. of Membrane Science. 2005. ID S0376738805001432. https://doi.org/10.1016/j.memsci.2005.02.030
- Zhang C., Cao B., Li P. Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity // J. of Membrane Science. 2018. V. 546. P. 90–99. https://doi.org/10.1016/j.memsci.2017.10.015
- Matsui S., Nakagawa T. Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. II. Irradiation of membranes with high-pressure mercury lamp // J. of Applied Polymer Science. 1998. V. 67. № 1. P. 49–60. https://doi.org/10.1002/(sici)1097-4628(19980103) 67:1<49:: aid-app6>3.0.co;2-o
- Zhang M., Deng L., Xiang D., Cao B., Hosseini S.S., Li P. Approaches to suppress CO2-Induced plasticization of polyimide membranes in gas separation applications // Processes. 2019. V. 7. № 1. ID51. https://doi.org/10.3390/pr7010051
- Sanaeepur H., Ebadi Amooghin A., Bandehali S., Moghadassi A., Matsuura T., Van der Bruggen B. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering // Progress in Polymer Science. 2019. V. 91. P. 80–125. https://doi.org/10.1016/j.progpolymsci.2019.02.001
- Plaza-Lozano D., Comesaña-Gándara B., de la Viuda M., Seong J.G., Palacio L., Prádanos P., de la Campa J.G., Cuadrado P., Lee Y.M., Hernández A., Alvarez C., Lozano A.E. New aromatic polyamides and polyimides having an adamantane bulky group // Materials Today Communications. 2015. V. 5. P. 23–31. https://doi.org/10.1016/j.mtcomm.2015.10.001
- Bandyopadhyay P., Banerjee S. Spiro[fluorene-9,9'-xanthene] containing fluorinated poly(ether amide)s: Synthesis, characterization and gas transport properties // European Polymer J. 2015. V. 69. P. 140–155. https://doi.org/10.1016/j.eurpolymj.2015.06.001
- Luo S., Wiegand J.R., Kazanowska B., Doherty C.M., Konstas K., Hill A.J., Guo R. Finely tuning the free volume architecture in iptycene-containing polyimides for highly selective and fast hydrogen transport // Macromolecules. 2016. V. 49. № 9. P. 3395–3405. https://doi.org/10.1021/acs.macromol.6b00485
- Bisoi S., Mandal A.K., Singh A., Padmanabhan V., Banerjee S. Soluble, optically transparent polyamides with a phosphaphenanthrene skeleton: synthesis, characterization, gas permeation and molecular dynamics simulations // Polymer Chemistry. 2017. V. 8. № 29. P. 4220–4232. https://doi.org/10.1039/C7PY00687J
- Chatterjee R., Bisoi S., Kumar A.G., Padmanabhan V., Banerjee S. Polyimides Containing phosphaphenanthrene skeleton: gas-transport properties and molecular dynamics simulations // ACS Omega.2 018. V. 3. № 10. P. 13510–13523. https://doi.org/10.1021/acsomega.8b01364
Supplementary files
