Современные промышленные и альтернативные методы получения алкиламинов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В обзоре проведен анализ современной научно-технической литературы, посвященной традиционным промышленным методам и новым альтернативным способам получения аминов, в частности, алкиламинов, с применением гетерогенных и гомогенных катализаторов. Рассмотрены основные направления превращения углеродсодержащих молекул при взаимодействии с аммиаком и другими азотсодержащими соединениями в амины различной степени замещенности. Выделены основные подходы к дизайну и получению катализаторов синтеза аминов. Освещены основные проблемы альтернативных способов их производства. Продемонстрирована возможность вовлечения в синтез алкиламинов техногенного диоксида углерода как одного из компонентов комплекса технологий улавливания, утилизации и хранения углерода (carbon capture, utilization and storage — CCUS).

Full Text

Restricted Access

About the authors

Оксана Сергеевна Дементьева

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Author for correspondence.
Email: dementyeva@ips.ac.ru
ORCID iD: 0000-0001-6801-0158

с. н. с., к. х. н.

Russian Federation, Москва, 119991

Антон Витальевич Борисов

Институт нефтехимического синтеза им. А. В. Топчиева РАН; Российский государственный университет нефти и газа (НИУ) имени И. М. Губкина

Email: dementyeva@ips.ac.ru
ORCID iD: 0009-0009-5217-5527

ст. лаборант

Russian Federation, Москва, 119991; Москва, 119991

Степан Дмитриевич Баженов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: dementyeva@ips.ac.ru
ORCID iD: 0000-0002-2010-5294

зав. лаб., к. х. н.

Russian Federation, Москва, 119991

References

  1. Suryanarayan N. Amines Market Size & Share Analysis — Growth Trends & Forecasts. 2024–2029. mordorintelligence.com. https://www.mordorintelligence.com/industry-reports/amines-market (дата обращения 15.03.2024).
  2. Grand View Research Inc. Global Amines Market Size & Outlook, 2023–2030. grandviewresearch.com. https://www.grandviewresearch.com/horizon/outlook/amines-market-size/global (дата обращения 15.03.2024).
  3. ООО “БизнесСтат”. Анализ рынка аминов в России в 2019–2023 гг., прогноз на 2024–2028 гг. businesstat.ru. https://businesstat.ru/catalog/id8579/ (дата обращения 15.03.2024).
  4. Streiff S., Jérôme F. Hydroamination of non-activated alkenes with ammonia: a holy grail in catalysis // Chem Soc Rev. 2021. V. 50. № 3. P. 1512–1521. https://doi.org/10.1039/C9CS00873J
  5. Visek K. Amines, Fatty. Kirk-Othmer Encyclopedia of Chemical Technology. December 2000. https://doi.org/10.1002/0471238961.0601202022091905.A01
  6. Danilov A.M. Research on fuel additives during 2011–2015 // Chem. Technol. Fuels Oils. 2017. V. 53. № 5. P. 705–721. https://doi.org/10.1007/S10553-017-0853-Z
  7. Peerman D., Tolberg W., Floyd D. Reaction of polyamide resins and epoxy resins // Ind. Eng. Chem. 2002. V. 49. № 7. P. 1091–1094. https://doi.org/10.1021/IE50571A025
  8. Fan X.-D., Deng Y., Waterhouse J., Pfromm P. Synthesis and characterization of polyamide resins from soy-based dimer acids and different amides // J. Appl. Polym. Sci. 1998. V. 68. P. 305–314. https://doi.org/10.1002/(SICI)1097-4628(19980411)68:2
  9. Nguyen T.A., Gregersen Ø.W., Männle F. Thermal oxidation of polyolefins by mild pro-oxidant additives based on iron carboxylates and lipophilic amines: degradability in the absence of light and effect on the adhesion to paperboard // Polymers (Basel). 2015. V. 7. № 8. P. 1522–1540. https://doi.org/10.3390/POLYM7081468
  10. Bonnaud P.A., Kinjo T., Sato N., Tohyama M. Adhesion and structure of lubricant films: Molecular simulations of amine-based organic additives in base oil at a model of steel surface // Tribol. Int. 2024. V. 193. ID109449. https://doi.org/10.1016/J.TRIBOINT.2024.109449
  11. Starostina I.A., Stoyanov O.V., Bogdanova S.A., Deberdeev R.J., Kurnosov V.V., Zaikov G.E. Studies on the surface properties and the adhesion to metal of polyethylene coatings modified with primary aromatic amines // J. Appl. Polym. Sci. 2001. V. 79. P. 388–397. https://doi.org/10.1002/1097-4628(20010418)80:3
  12. Kemalov A., Kemalov R. Practical aspects of development of universal emulsifiers for aqueous bituminous emulsions // World Appl. Sci. J. 2013. V. 23. № 6. P. 858–862. https://doi.org/10.5829/idosi.wasj.2013.23.06.13103
  13. Mercado R.A., Salager J.L., Sadtler V., Marchal P., Choplin L. Breaking of a cationic amine oil-in-water emulsion by pH increasing: Rheological monitoring to modelize asphalt emulsion rupture // Colloids Surf. A: Physicochem. Eng. Asp. 2014. V. 458. № 1. P. 63–68. https://doi.org/10.1016/J.COLSURFA.2014.03.109
  14. Kostag M., Jedvert K., Achtel C., Heinze T., El Seoud O.A. Recent advances in solvents for the dissolution, shaping and derivatization of cellulose: quaternary ammonium electrolytes and their solutions in water and molecular solvents // Molecules. 2018. V. 23. № 3. ID511. https://doi.org/10.3390/MOLECULES23030511
  15. Liang N., Liao R., Xiang M., Mo Y., Yuan Y. Influence of amine compounds on the thermal stability of paper-oil insulation // Polymers (Basel). 2018. V. 10. № 8. ID891. https://doi.org/10.3390/POLYM10080891
  16. Lu Ch., Chen J., Campbell., Rosencrance S., Rabideau J.S. Method for producing paper. 2018 // Patent US № 2018051416A1.
  17. Bell J.P. Structure of a typical amine-cured epoxy resin // J. Pol. Sci. A-2: Pol. Phys. 1970. V. 8. № 3. P. 417–436. https://doi.org/10.1002/POL.1970.160080308
  18. Smith I.T. The mechanism of the crosslinking of epoxide resins by amines // Polymer (Guildf). 1961. V. 2. № C. P. 95–108. https://doi.org/10.1016/0032-3861(61)90010-6
  19. Weinmann D.J., Dangayach K., Smith C. Amine-functional curatives for low temperature cure epoxy coatings-functional curatives for low temperature cure epoxy coatings // J. Coat. Techn. 1996. V. 68. P. 29–38.
  20. Abdel-Halim E.S. Amine salts-activated systems for one-step bleaching of cotton fabrics // Carbohydr. Polym. 2013. V. 96. № 1. P. 64–70. https://doi.org/10.1016/J.CARBPOL.2013.03.092
  21. Cai J.Y., Evans D.J. Guanidine derivatives used as peroxide activators for bleaching cellulosic textiles // Col. Technol. 2007. V. 123. № 2. P. 115–118. https://doi.org/10.1111/J.1478-4408.2007.00070.X
  22. Alexandratos S.D., Crick D.W. Polymer-supported reagents: Application to separation science // Ind. Eng. Chem. Res. 1996. V. 35. № 3. P. 635–644. https://doi.org/10.1021/IE9503196
  23. Elhalwagy M.E., Elsherbiny A.S., Gemeay A.H. Aminerich polymers for water purification applications // Mater. Today Chem. 2023. V. 27. ID101344. https://doi.org/10.1016/j.mtchem.2022.101344
  24. Zhao X., Deshmukh S.D., Rokke D.J., Zhang G., Wu Z., Miller J.T., Agrawal R. Investigating Chemistry of metal dissolution in amine-thiol mixtures and exploiting it toward benign ink formulation for metal chalcogenide thin films // Chem. Mater. 2019. V. 31. № 15. P. 5674–5682. https://doi.org/10.1021/acs.chemmater.9b01566
  25. Gutierrez X., Silva F., Morles A., Pazos D., Rivas H. The use of amines in the stabilization of acidic hydrocarbons in water emulsions. Pet. Sci. Technol. 2003. V. 21. № 7–8. P. 1219–1240. https://doi.org/10.1081/LFT-120018169
  26. Bernstein J.A., Stauder T., Bernstein D.I., Bernstein L. A combined respiratory and cutaneous hypersensitivity syndrome induced by work exposure to quaternary amines // J. Allergy. Clin Immunol. 1994. V. 94. № 2. P. 257–259. https://doi.org/10.1053/ai.1994.v94.a52646
  27. Pigatto P.D., Bigardi A.S., Cusano F. Contact dermatitis to cocamidopropylbetaine is caused by residual amines: Relevance, clinical characteristics, and review of the literature // Am. J. Contact Dermat. 1995. V. 6. № 1. P. 13–16. https://doi.org/10.1016/1046-199X(95)90062-4
  28. Paine M.R.L., Pianegonda N., Huynh T.Т., Manefield M., MacLaughlin S.A., Rice S., Barker P.J., Blanksby S.J. Evaluation of hindered amine light stabilisers and their N-chlorinated derivatives as antibacterial and antifungal additives for thermoset surface coatings // Prog. Org. Coat. 2016. V. 99. P. 330–336. https://doi.org/10.1016/J.PORGCOAT.2016.06.009
  29. Akers A., Ammermann E., Buschmann E., Götz N., Himmele W., Lorenz G., Pommer E. ‐H., Rentzea C., Röhl F., Siegel H., Zipperer B., Sauter H., Zipplies M. Chemistry and biology of novel amine fungicides: Attempts to improve the antifungal activity of fenpropimorph // Pestic. Sci. 1991. V. 31. № 4. P. 521–538. https://doi.org/10.1002/PS.2780310407
  30. Carvalho M.C., Pereira C., Gonçalves I.C., Pinheiro H.M., Santos A.R., Lopes A., Ferra M.I. Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines // Int. Biod. Biodegr. 2008. V. 62. № 2. P. 96–103. https://doi.org/10.1016/J.IBIOD.2007.12.008
  31. Benkhaya S., Harfi S.El., Harfi A.El. Classifications, properties and applications of textile dyes: A review // Appl. J. Env. Eng. Sci. 2017. V. 3. № 3. P. 311–320. https://doi.org/10.48422/IMIST.PRSM/AJEES-V3I3.9681
  32. Lang Y., Zhou J., Sun J., Liang H., Zhang K., Wang C., Liu Y., Geng T. Effect of different ethylene oxide addition numbers on the performance of polyoxyethylene tallow amine as a pesticide emulsifier // Langmuir. 2024. V. 40. № 2. P. 1503–1514. https://doi.org/10.1021/acs.langmuir.3c03269
  33. Dong H., Xu S., Wang J., Zhang H., Chen Y., Bi L., Zhao Z. Synthesis and herbicidal application of turpentine derivative p-menthene type secondary amines as sustainable agrochemicals // New J. Chem. 2020. V. 44. № 20. P. 8280–8288. https://doi.org/10.1039/D0NJ00583E
  34. Yamazaki N., Iguchi T., Higashi F. The reaction of diphenyl carbonate with amines and its application to polymer synthesis // J. Pol. Sci.: Pol. Chem. Ed. 1979. V. 17. № 3. P. 835–841. https://doi.org/10.1002/POL.1979.170170322
  35. Froidevaux V., Negrell C., Caillol S., Pascault J.P., Boutevin B. Biobased amines: from synthesis to polymers; present and future // Chem Rev. 2016. V. 116. № 22. P. 14181–14224. https://doi.org/10.1021/acs.chemrev.6b00486
  36. Willars M., Hampson N.A., Atkinson A., Marshall A. The corrosion of iron in hydrochloric acid: Inhibition by amines // Surf. Technol. 1976. V. 4. № 5. P. 465–472. https://doi.org/10.1016/0376-4583(76)90059-5
  37. Badran B.M., Mohammed H.A., Aglan H.A. Effect of different polymers on the efficiency of water-borne methyl amine adduct as corrosion inhibitor for surface coatings // J. Appl. Polym. Sci. 2002. V. 85. № 4. P. 879–885. https://doi.org/10.1002/APP.10704
  38. Hamed O., Lail B.A., Deghles A., Qasem B., Azzaoui K., Obied A.A., Algarra M., Jodeh S. Synthesis of a cross-linked cellulose-based amine polymer and its application in wastewater purification // Environmental Science and Pollution Research. 2019. V. 26. № 27. P. 28080–28091. https://doi.org/10.1007/S11356-019-06001-4
  39. Filippov L.O., Duverger A., Filippova I.V., Kasaini H., Thiry J. Selective flotation of silicates and Ca-bearing minerals: тhe role of non-ionic reagent on cationic flotation // Miner Eng. 2012. V. 36–38. P. 314–323. https://doi.org/10.1016/J.MINENG.2012.07.013
  40. Wang R., Zhao H., Qi C., Yang X., Zhang S., Li M., Wang L. Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity // Energy. 2022. V. 260. ID125045. https://doi.org/10.1016/J.ENERGY.2022.125045
  41. Meng F., Ju T., Han S., Lin L., Li J., Chen K., Jiang J. Study on the effectiveness of ionic liquid-based biphasic amine solvent in removing H2S, NH3 and CO2 from biogas and its influential characteristics // Chem. Eng. J. 2023. V. 474. ID145805. https://doi.org/10.1016/J.CEJ.2023.145805
  42. Wang R., Liu S., Li Q., Zhang S., Wang L., An S. CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine // Energy. 2021. V. 215. ID119209. https://doi.org/10.1016/J.ENERGY.2020.119209
  43. Ferruti P., Marchisio M.A., Duncan R. Poly(amido-amine)s: biomedical applications // Macromol. Rapid Commun. 2002. V. 23. P. 332–355. https://doi.org/10.1002/1521-3927(20020401)23:5/6
  44. Boehm J.C., Smietana J.M., Sorenson M.E., Garigipati R.S., Gallagher T.F., Sheldrake P.L., Bradbeer J., Badger A.M., Laydon J.T., Lee J.C., Hillegass L.M., Griswold D.E., Breton J.J., Chabot-Fletcher M.C., Adams J.L. 1-Substituted 4-aryl-5-pyridinylimidazoles: A new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency // J. Med. Chem. 1996. V. 39. № 20. P. 3929–3937. https://doi.org/10.1021/jm960415o
  45. Chung J.-Y., Hwang U., Kim J., Kim N.-Y., Nam J., Jung J., Kim S.-H., Cho J.K., Lee B., Park I.-K., Suhr J., Nam J.-D. Amine-functionalized lignin as an eco-friendly antioxidant for rubber compounds // ACS Sustain. Chem. Eng. 2023. V. 11. № 6. P. 2303–2313. https://doi.org/10.1021/acssuschemeng.2c05878
  46. Sirisinha C., Phoowakeereewiwat S., Saeoui P. Cure and dynamic mechanical properties in peroxide-cured isoprene rubber: effects of stearic acid and amine-based antioxidant // Eur. Polym. J. 2004. V. 40. № 8. P. 1779–1785. https://doi.org/10.1016/J.EURPOLYMJ.2004.03.002
  47. Chemanalyst. Alkyl Amine Market Analysis: Industry Market Size, Plant Capacity, Process, Technology, Operating Efficiency, Demand & Supply, End-Use, Foreign Trade, Type, Sales Channel, Regional Demand, Company Share, Manufacturing Process, Policy and Regulatory Landscape, 2015–2030. chemanalyst.com. https://www.chemanalyst.com/industry-report/alkyl-amine-market-670 (дата обращения — 18.03.2024).
  48. Brudermüller M. BASF Report 2022. https://report.basf.com https://report.basf.com/2022/en/_assets/downloads/entire-basf-ar22.pdf. (дата обращения 15.05.2024).
  49. Chemanalyst. Methyl Amine Market Analysis: Industry Market Size, Plant Capacity, Production, Operating Efficiency, Demand & Supply, End-User Industries, Sales Channel, Regional Demand, Company Share, Manufacturing Process, 2015–2032. chemanalyst.com. https://www.chemanalyst.com/industry-report/methyl-amine-market-2864 (дата обращения 18.03.2024).
  50. Balker A., Kijenski J. Catalytic // Catal. Rev. Sci. Eng. 1985. V. 27. № 4. P. 653–697. https://doi.org/10.1080/01614948508064235
  51. Li J., Zhang Y., Kuruvinashetti K., Kornienko N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis // Nat. Rev. Chem. 2022. V. 6. № 5. P. 303–319. https://doi.org/10.1038/s41570-022-00379-5
  52. Dub P.A., Gordon J.C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts // Nat. Rev. Chem. 2018. V. 2. № 12. P. 396–408. https://doi.org/10.1038/s41570-018-0049-z
  53. Veisi H., Safarimehr P., Hemmati S. Buchwald–Hartwig C–N cross coupling reactions catalyzed by palladium nanoparticles immobilized on thio modified-multi walled carbon nanotubes as heterogeneous and recyclable nanocatalyst // Mat. Sci. Eng.: C. 2019. V. 96. P. 310–318. https://doi.org/10.1016/J.MSEC.2018.11.026
  54. Legnani L., Bhawal B.N., Morandi B. Recent developments in the direct synthesis of unprotected primary аmines // Synthesis (Stuttg). 2017. V. 49. № 04. P. 776–789. https://doi.org/10.1055/S-0036-1588371
  55. Gooßen L.J., Huang L., Arndt M., Gooßen K., Heydt H. Late transition metal-catalyzed hydroamination and hydroamidation // Chem. Rev. 2015. V. 115. № 7. P. 2596–2697. https://doi.org/10.1021/cr300389u
  56. Gao S., Zhu X., Li X., Wang Y., Zhang Y., Xie S., An J., Chen F., Liu S., Xu L. Thermodynamic study of direct amination of isobutylene to tert-butylamine // Chin. J. Catal. 2017. V. 38. № 1. P. 106–114. https://doi.org/10.1016/S1872-2067(16)62550-0
  57. Reznichenko A.L., Hultzsch K.C. Hydroamination of аlkenes // Organic Reactions. 2015. V. 88. № 1. P. 1–554. https://doi.org/10.1002/0471264180.OR088.01
  58. Sango T., Fischer N., Henkel R., Roessner F., Steen E. Van, Claeys M. Formation of nitrogen containing compounds from ammonia co-fed to the Fischer–Tropsch synthesis // Appl. Catal. A: Gen. 2015. V. 502. P. 150–156. https://doi.org/10.1016/J.APCATA.2015.06.006
  59. Rausch A.K., Schubert L., Henkel R., van Steen E., Claeys M., Roessner F. Enhanced olefin production in Fischer–Tropsch synthesis using ammonia containing synthesis gas feeds // Catal. Today. 2016. V. 275. P. 94–99. https://doi.org/10.1016/J.CATTOD.2016.02.002
  60. Kizilkaya A.C., Martínez-Monje M.E., Prieto G. Synthesis of acetonitrile from NH3/syngas mixtures on molybdenum nitride: Insights into the reaction mechanism // Catal. Today. 2024. V. 442. ID114947. https://doi.org/10.1016/J.CATTOD.2024.114947
  61. Gredig S.V., Koeppel R.A., Baiker A. Palladium catalyzed synthesis of methylamines from carbon dioxide, hydrogen and ammonia // Catal. Letters. 1997. V. 46. № 1–2. P. 49–55. https://doi.org/10.1023/A:1019085511301/METRICS
  62. Einemann M., Neumann F., Roessner F. Influence of ammonia and different promoters on the iron-based Fischer-Tropsch synthesis // Chem. Cat. Chem. 2024. V. 16. № 18. ID e202400726. https://doi.org/10.1002/CCTC.202400726
  63. Gardner D.A., Clark R.T. Catalytic process for preparing ethyl amines // Patent US № 4255357A 1980.
  64. Martinez P.J.V., Fowlkes R.L. Synthesis of lower alkyl amines // Patent US № 4314084A February 1982.
  65. Baiker A. Utilization of carbon dioxide in heterogeneous catalytic synthesis // Appl. Organomet. Chem. 2000. V. 14. № 12. P. 751–762. https://doi.org/10.1002/1099-0739(200012)14:12 <751::AID-AOC85>3.0.CO;2-J
  66. Hayes K.S. Industrial processes for manufacturing amines // Appl. Catal. A: Gen. 2001. V. 221. № 1–2. P. 187–195. https://doi.org/10.1016/S0926-860X(01)00813-4
  67. Yue C., Gu L., Zhang Z., Wei X., Yang H. Nickel- and cobalt-based heterogeneous catalytic systems for selective primary amination of alcohol with ammonia // Arab. J. Chem. 2022. V. 15. № 6. ID103865. https://doi.org/10.1016/J.ARABJC.2022.103865
  68. Jeon H.Y., Shin C.H., Jung H.J., Hong S.B. Catalytic evaluation of small-pore molecular sieves with different framework topologies for the synthesis of methylamines // Appl. Catal. A: Gen. 2006. V. 305. № 1. P. 70–78. https://doi.org/10.1016/J.APCATA.2006.02.044
  69. Qiao Y., Wu P., Xiang X., Yang M., Wang Q., Tian P., Liu Z. SAPO-34 synthesized with n-butylamine as a template and its catalytic application in the methanol amination reaction // Chin. J. Cat. 2017. V. 38. № 3. P. 574–582. https://doi.org/10.1016/S1872-2067(17)62775-X
  70. Liu Z., Wang Q., Liu S., Yang M., Fan D., Zhu D., Tian P. Synthesis of SAPO-34 by utilizing spent industrial MTO catalyst and their catalytic applications // Mat. Today Sust. 2023. V. 21. ID100302. https://doi.org/10.1016/J.MTSUST.2022.100302
  71. Wu P., Yang M., Zhang W., Zeng S., Gao M., Xu S., Tian P., Liu Z. Silicoaluminophosphate molecular sieve DNL-6: Synthesis with a novel template, N,N'dimethylethylenediamine, and its catalytic application // Chin. J. Cat. 2018. V. 39. № 9. P. 1511–1519. https://doi.org/10.1016/S1872-2067(18)63122-5
  72. Tijsebaert B., Yilmaz B., Müller U., Gies H., Zhang W., Bao X., Xiao F. S., Tatsumi T., De Vos D. Shape-selective synthesis of methylamines over the RRO zeolite Al-RUB-41 // J. Catal. 2011. V. 278. № 2. P. 246–252. https://doi.org/10.1016/J.JCAT.2010.12.010
  73. Wang T., Ibañez J., Wang K., Fang L., Sabbe M., Michel C., Paul S., Pera-Titus M., Sautet P. Rational design of selective metal catalysts for alcohol amination with ammonia // Nat. Catal. 2019. V. 2. № 9. P. 773–779. https://doi.org/10.1038/s41929-019-0327-2
  74. Kita Y., Kuwabara M., Yamadera S., Kamata K., Hara M. Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst // Chem. Sci. 2020. V. 11. № 36. P. 9884–9890. https://doi.org/10.1039/D0SC03858J
  75. Gao X., Sahsah D., Heyden A., Bond J.Q. Analysis of thermodynamics, kinetics, and reaction pathways in the amination of secondary alcohols over Ru/SiO2 // J. Catal. 2023. V. 424. P. 74–90. https://doi.org/10.1016/J.JCAT.2023.05.003
  76. Verma R., Jing Y., Liu H., Aggarwal V., Kumar Goswami H., Bala E., Ke Z., Kumar Verma P. Employing ammonia for diverse amination reactions: recent developments of abundantly available and challenging nitrogen sources // Eur. J. Org. Chem. 2022. V. 2022. № 25. ID e202200298. https://doi.org/10.1002/EJOC.202200298
  77. Gunanathan C., Milstein D. Selective synthesis of primary amines directly from alcohols and ammonia // Angew. Chem. Int. Ed. 2008. V. 47. № 45. P. 8661–8664. https://doi.org/10.1002/ANIE.200803229
  78. Best F., Mundstock A., Richter H., Kißling P. A., Hindricks K. D.J., Huang A., Behrens P., Caro J. Controlled methylamine synthesis in a membrane reactor featuring a highly steam selective K+-LTA membrane // Micro. Mesop. Mat. 2022. V. 337. ID111920. https://doi.org/10.1016/J.MICROMESO.2022.111920
  79. Irrgang T., Kempe R. Transition-metal-catalyzed reductive amination employing hydrogen // Chem. Rev. 2020. V. 120. № 17. P. 9583–9674. https://doi.org/10.1021/acs.chemrev.0c00248
  80. Luo D., He Y., Yu X., Wang F., Zhao J., Zheng W., Jiao H., Yang Y., Li Y., Wen X. Intrinsic mechanism of active metal dependent primary amine selectivity in the reductive amination of carbonyl compounds // J. Catal. 2021. V. 395. P. 293–301. https://doi.org/10.1016/J.JCAT.2021.01.016
  81. Kim J.E., Choi S., Balamurugan M., Jang J.H., Nam K.T. Electrochemical C–N bond formation for sustainable amine synthesis // Trends. Chem. 2020. V. 2. № 11. P. 1004–1019. https://doi.org/10.1016/j.trechm.2020.09.003
  82. Lehnherr D., Lam Y.H., Nicastri M.C., Liu J., Newman J.A., Regalado E.L., Dirocco D.A., Rovis T. Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer // J. Am. Chem. Soc. 2020. V. 142. № 1. P. 468–478. https://doi.org/10.1021/jacs.9b10870
  83. Wu S., Huang X., Zhang H., Wei Z., Wang M. Efficient electrochemical hydrogenation of nitroaromatics into arylamines on a CuCo2O4 spinel cathode in an alkaline electrolyte // ACS Catal. 2022. V. 12. № 1. P. 58–65. https://doi.org/10.1021/acscatal.1c03763
  84. Zhang D., Chen J., Hao Z., Jiao L., Ge Q., Fu W.-F., Lv X.-J. Highly efficient electrochemical hydrogenation of acetonitrile to ethylamine for primary amine synthesis and promising hydrogen storage // Chem. Catalysis. 2021. V. 1. № 2. P. 393–406. https://doi.org/10.1016/j.checat.2021.03.012
  85. Wu D., Li J., Yao L., Xie R., Peng Z. An electrochemical ethylamine/acetonitrile redox method for ambient hydrogen storage // ACS Appl. Mater. Interfaces. 2021. V. 13. № 46. P. 55292–55298. https://doi.org/10.1021/acsami.1c20498
  86. Wu Y., Jiang Z., Lin Z., Liang Y., Wang H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate // Nat. Sust. 2021. V. 4. № 8. P. 725–730. https://doi.org/10.1038/s41893-021-00705-7
  87. Rooney C.L., Wu Y., Tao Z., Wang H. Electrochemical reductive N-methylation with CO2 enabled by a molecular catalyst // J. Am. Chem. Soc. 2021. V. 143. № 47. P. 19983–19991. https://doi.org/10.1021/jacs.1c10863
  88. Tao Z., Rooney C.L., Liang Y., Wang H. Accessing organonitrogen compounds via C–N coupling in electrocatalytic CO2 reduction // J. Am. Chem. Soc. 2021. V. 143. № 47. P. 19630–19642. https://doi.org/10.1021/jacs.1c10714
  89. Rooney C.L., Wu Y., Tao Z., Wang H. Electrochemical N-мethylation with CO2 enabled by a molecular catalystм// J Am Chem Soc. 2021. V. 143. № 47. P. 19983–19991. https://doi.org/10.1021/jacs.1c10863
  90. Tao Z., Wu Y., Wu Z., Shang B., Rooney C., Wang H. Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine // J. Ener. Chem. 2022. V. 65. P. 367–370. https://doi.org/10.1016/J.JECHEM.2021.06.007
  91. Jia R., Liu H., Li S., Lian Y., Dai Y., Wang Y. A kinetic study on the electrochemical hydrogenation of N,N-dimethylformamide to trimethylamine // Int. J. Electrochem. Sci. 2020. V. 15. № 5. P. 3914–3921. https://doi.org/10.20964/2020.05.39
  92. Slabu I., Galman J.L., Lloyd R.C., Turner N.J. Discovery, engineering, and synthetic application of transaminase biocatalysts // ACS Catal. 2017. V. 7. № 12. P. 8263–8284. https://doi.org/10.1021/acscatal.7b02686.93
  93. Grogan G. Synthesis of chiral amines using redox biocatalysis // Curr. Opin. Chem. Biol. 2018. V. 43. P. 15–22. https://doi.org/10.1016/J.CBPA.2017.09.008
  94. Fuchs M., Tauber K., Sattler J., Lechner H., Pfeffer J., Kroutil W., Faber K. Amination of benzylic and cinnamic alcohols via a biocatalytic, aerobic, oxidation–transamination cascade // RSC Adv. 2012. V. 2. № 15. P. 6262–6265. https://doi.org/10.1039/C2RA20800H
  95. Schätzle S., Steffen-Munsberg F., Thontowi A., Höhne M., Robins K., Bornscheuer U.T. Enzymatic asymmetric synthesis of enantiomerically pure aliphatic, aromatic and arylaliphatic amines with (R)-selective amine transaminases // Adv. Synth. Catal. 2011. V. 353. № 13. P. 2439–2445. https://doi.org/10.1002/ADSC.201100435
  96. Gomm A., O’Reilly E. Transaminases for chiral amine synthesis // Curr. Opin. Chem. Biol. 2018. V. 43. P. 106–112. https://doi.org/10.1016/J.CBPA.2017.12.007
  97. Guo F., Berglund P. Transaminase biocatalysis: optimization and application // Green Chem. 2017. V. 19. № 2. P. 333–360. https://doi.org/10.1039/C6GC02328B
  98. Knaus T., Böhmer W., Mutti F.G. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds // Green Chem. 2017. V. 19. № 2. P. 453–463. https://doi.org/10.1039/C6GC01987K
  99. Dold S.M., Syldatk C., Rudat J. Transaminases and their Applications // Green Biocat. 2016. P. 715–746. https://doi.org/10.1002/9781118828083.CH29
  100. Patil M.D., Grogan G., Bommarius A., Yun H. Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral amines // Catal. 2018. V. 8. № 7. ID254. https://doi.org/10.3390/CATAL8070254
  101. Inoue F., Kashihara M., Yadav M.R., Nakao Y. Buchwald–Hartwig Amination of Nitroarenes // Chem. Int. Ed. 2017. V. 56. № 43. P. 13307–13309. https://doi.org/10.1002/ANIE.201706982
  102. Pithani S., Malmgren M., Aurell C.J., Nikitidis G., Friis S.D. Biphasic aqueous reaction conditions for process-friendly palladium-catalyzed C–N cross-coupling of aryl amines // Org. Process Res. Dev. 2019. V. 23. № 8. P. 1752–1757. https://doi.org/10.1021/acs.oprd.9b00237
  103. Tian X., Lin J., Zou S., Lv J., Huang Q., Zhu J., Huang S., Wang Q. [Pd(IPr*R)(acac)Cl]: efficient bulky Pd–NHC catalyst for Buchwald–Hartwig C–N cross-coupling reaction // J. Organomet. Chem. 2018. V. 861. P. 125–130. https://doi.org/10.1016/J.JORGANCHEM.2018.02.035
  104. Dennis J.M., White N.A., Liu R.Y., Buchwald S.L. Pd-Catalyzed C–N coupling reactions facilitated by organic bases: mechanistic investigation leads to enhanced reactivity in the arylation of weakly binding amines // ACS Catal. 2019. V. 9. № 5. P. 3822–3830. https://doi.org/10.1021/acs.oprd.9b00237
  105. Panahi F., Daneshgar F., Haghighi F., Khalafi-Nezhad A. Immobilized Pd nanoparticles on silica-starch substrate (PNP-SSS): Efficient heterogeneous catalyst in Buchwald–Hartwig C–N cross coupling reaction // J. Organomet. Chem. 2017. V. 851. P. 210–217. https://doi.org/10.1016/J.JORGANCHEM.2017.09.037
  106. Lim T., Byun S., Kim B.M. Pd(PPh3)4-Catalyzed Buchwald–Hartwig amination of aryl fluorosulfonates with aryl amines // Asian J Org Chem. 2017. V. 6. № 9. P. 1222–1225. https://doi.org/10.1002/AJOC.201700064
  107. Chen Z., Zeng H., Girard S.A., Wang F., Chen N., Li C.-J. Formal direct cross-coupling of phenols with amines // Angew. Chem. 2015. V. 127. № 48. P. 14695–14699. https://doi.org/10.1002/ANGE.201506751
  108. Veisi H., Sarachegol P., Hemmati S. Palladium(II) anchored on polydopamine coated-magnetic nanoparticles (Fe3OааPDA@Pd(II)): а heterogeneous and core–shell nanocatalyst in Buchwald–Hartwig C–N cross coupling reactions // Polyhedron. 2018. V. 156. P. 64–71. https://doi.org/10.1016/J.POLY.2018.09.019
  109. Veisi H., Tamoradi T., Karmakar B., Hemmati S. Green tea extract–modified silica gel decorated with palladium nanoparticles as a heterogeneous and recyclable nanocatalyst for Buchwald-Hartwig C–N cross-coupling reactions // J. Phys. Chem. Sol. 2020. V. 138. ID109256. https://doi.org/10.1016/J.JPCS.2019.109256
  110. Villatoro R.S., Belfield J.R., Arman H.D., Hernandez L.W., Simmons E.M., Garlets Z.J., Wisniewski S.R., Coombs J.R., Frantz D.E. General Method for Ni–C–N cross-couplings of (hetero)aryl chlorides with anilines and aliphatic amines under homogeneous conditions using a dual-base strategy // Organometallics. 2023. V. 42. № 21. P. 3164–3172. https://doi.org/10.1021/acs.organomet.3c00419
  111. Liu R.Y., Dennis J.M., Buchwald S.L. The quest for the ideal base: rational design of a nickel precatalyst enables mild, homogeneous C-N cross-coupling // J. Am. Chem. Soc. 2020. V. 142. № 9. P. 4500–4507. https://doi.org/10.1021/jacs.0c00286
  112. Müller T. E., Beller M. Metal-initiated amination of alkenes and alkynes† // Chem. Rev. 1998. V. 98. № 2. P. 675–703. https://doi.org/10.1021/CR960433D
  113. Eller K., Henkes E., Rossbacher R., Höke H. Amines, Aliphatic. Ullmann’s Enc. Ind. Chem. 2000. https://doi.org/10.1002/14356007.A02_001
  114. Krimen L.I., Cota D.J. The ritter reaction // Org. React. 2011. P. 213–325. https://doi.org/10.1002/0471264180.OR017.03
  115. Chheda B.D., Pendergast J.G., Rangavajjula S., Trauth D.M. Process for preparation of tertiary alkyl primary amines // Patent WO № 2014165586A2. 2014.
  116. Teter J.W. Production of organic compounds containing nitrogen // Patent US № 2381470A. 1945.
  117. Yang Y., Wong N.I., Teo P. Formal // Eu. J. Org. Chem. 2015. V. 2015. № 6. P. 1207–1210. https://doi.org/10.1002/EJOC.201403654
  118. Strom A.E., Hartwig J.F. One-pot anti-markovnikov hydroamination of unactivated alkenes by hydrozirconation and amination // J. Org. Chem. 2013. V. 78. № 17. P. 8909–8914. https://doi.org/10.1021/jo401498w
  119. Li Y., Marks T.J. Organolanthanide-catalyzed intramolecular hydroamination/cyclization of aminoalkynes // J. Am. Chem. Soc. 1996. V. 118. № 39. P. 9295–9306. https://doi.org/10.1021/ja9612413
  120. Ryu J.S., Li G.Y., Marks T.J. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations // J. Am. Chem. Soc. 2003. V. 125. № 41. P. 12584–12605. https://doi.org/10.1021/ja035867m
  121. Hölderich W.F., Heitmann G. Synthesis of intermediate and fine chemicals on heterogeneous catalysts with respect to environmental protection // Catal. Today. 1997. V. 38. № 2. P. 227–233. https://doi.org/10.1016/S0920-5861(97)00071-0
  122. Peterson J.O.H., Fales H.S. Amines via the amination of olefins // Patent US № 4307250A. 1981.
  123. Peterson J.O.H., Fales H.S. Amines via the amination of olefins // Patent US № М4375002A. 1983.
  124. Taglieber V., Hoelderich W., Kummer R., Mross W.D., Saladin G. Production of amines from an olefin and ammonia or a primary or secondary amine // Patent US № 4929759A. 1990.
  125. Suryanarayan N. Alkyl Amines Market Size & Share Analysis — Growth Trends & Forecasts (2024–2029). https://www.mordorintelligence.com/industry-reports/alkylamines-market (дата обращения 15.03.2024).
  126. Taglieber V., Hoelderich W., Kummer R., Mross W.D., Saladin G. Preparation of tert-butylamine from isobutene // Patent US № 4929758A. 1990.
  127. Brudermüller M. BASF completes capacity expansion for tertiary butylamine in Nanjing, China. https://report.basf.com. https://www.basf.com/jp/en/media/news-releases/ global/2015/09/capacit-expansion-tba-nanjing.html (дата обращения 15.05.2024).
  128. Mizuno N., Tabata M., Uematsu T., Iwamoto M. 1.8 Direct amination of lower alkenes with ammonia over zeolite catalysts // Stud. Surf. Sci. Catal. 1994. V. 90. № C. P. 71–76. https://doi.org/10.1016/S0167-2991(08)61801-7
  129. Deeba M., Ford M.E., Johnson T.A. Direct amination of ethylene by zeolite catalysis // J. Chem. Soc. Chem. Commun. 1987. № 8. P. 562–563. https://doi.org/10.1039/C39870000562
  130. Deeba M., Ford M.E. Direct amination of olefins: A comparative study over erionite and Y zeolites // Zeolites. 1990. V. 10. № 8. P. 794–797. https://doi.org/10.1016/0144-2449(90)90064-X
  131. Ho C.R., Bettinson L.A., Choi J., Head-Gordon M., Bell A.T. Zeolite-catalyzed isobutene amination: mechanism and kinetics // ACS Catal. 2019. V. 9. № 8. P. 7012–7022. https://doi.org/10.1021/acscatal.9b01799
  132. Hares K., Wegener H.W., Roth T.F.H., Reichert R., Vogt D., Seidensticker T. Primary amines from alkenes and carbonyl compounds: highly selective hydrogenation of oximes using a homogeneous Ru-catalyst // Catal. Sci. Technol. 2024. V. 14. № 10. P. 2940–2950. https://doi.org/10.1039/D4CY00368C
  133. Du Y.D., Chen B.H., Shu W. Direct access to primary amines from alkenes by selective metal-free hydroamination // Angew. Chem. Int. Ed. 2021. V. 60. № 18. P. 9875–9880. https://doi.org/10.1002/ANIE.202016679
  134. Masahide Y., Ryuji K., Hiroshi T., Daigo U., Kazuaki I., Koutaro J., Tsutomu S., Toshiaki Y. Redox-photosensitized aminations of 1,2-а-1,3-cycloalkadienes, аrylcyclopropanes, and quadricyclane with ammonia // J. Org. Chem. 2003. V. 68. № 20. P. 7618–7624. https://doi.org/10.1021/jo030053
  135. Khedkar V., Tillack A., Benisch C., Melder J.P., Beller M. Base-catalyzed hydroamination of ethylene with diethylamine // J. Mol. Catal. A: Chem. 2005. V. 241. № 1–2. P. 175–183. https://doi.org/10.1016/J.MOLCATA.2005.06.068
  136. Boehling R., Steinbrenner U., Funke F., Dier R. Method for producing amines by means of olefin amination in the presence of unsaturated nitrogen compounds // Patent WO № 03042156A1. 2003.
  137. Reznichenko A.L., Nguyen H.N., Hultzsch K.C. Asymmetric intermolecular hydroamination of unactivated alkenes with simple amines // Angew. Chem. Int. Ed. 2010. V. 49. № 47. P. 8984–8987. https://doi.org/10.1002/ANIE.201004570
  138. Funke F., Steinbrenner U., Boehling R. Method for producing dialkyl ethyl amines from dialkyl amines and ethylene // Patent WO № 03042155A2. 2003.
  139. Miller D.C., Ganley J.M., Musacchio A.J., Sherwood T.C., Ewing W.R., Knowles R.R. Anti-markovnikov hydroamination of unactivated alkenes with primary alkyl amines // J. Am. Chem. Soc. 2019. V. 141. № 42. P. 16590–16594. https://doi.org/10.1021/jacs.9b08746
  140. Kurtz A.N. Production of methylamines // Patent US № 3444203A. 1969.
  141. Dement’ev K.I., Dementeva O.S., Ivantsov M.I., Kulikova M.V., Magomedova M.V., Maximov A.L., Lyadov A.S., Starozhitskaya A.V., Chudakova M.V. Promising approaches to carbon dioxide processing using heterogeneous catalysts (a review) // Petrol. Chemistry. 2022. V. 62. № 5. P. 445–474. https://doi.org/10.1134/S0965544122050012
  142. Kulikova M.V., Khadzhiev S.N. Metal-containing nanodispersions as Fischer–Tropsch catalysts in three-phase slurry reactors // Petrol. Chemistry. 2017. V. 57. № 12. P. 1173–1176. https://doi.org/10.1134/S0965544117060202
  143. Kulikova M.V. The new Fischer-Tropsch process over ultrafine catalysts // Catal. Today. 2020. V. 348. P. 89–94. https://doi.org/10.1016/J.CATTOD.2019.09.036
  144. Corbin D.R., Schwarz S., Sonnichsen G.C. Methylamines synthesis: A review // Catal. Today. 1997. V. 37. № 2. P. 71–102. https://doi.org/10.1016/S0920-5861(97)00003-5
  145. Kliger G.A., Glebov L.S., Popova T.P., Marchevskaya E.V., Beryezkin V.G., Loktev S.M. Carbon number distribution and the chain-growth mechanism of products in the modified Fischer–Tropsch synthesis on a reduced promoted fused magnetite catalyst // J. Catal. 1988. V. 111. № 2. P. 418–420. https://doi.org/10.1016/0021-9517(88)90100-5
  146. Gredig S.V., Koeppel R.A., Baiker A. Comparative study of synthesis of methylamines from carbon oxides and ammonia over Cu/Al2O3 // Catal. Today. 1996. V. 29. № 1–4. P. 339–342. https://doi.org/10.1016/0920-5861(95)00301-0
  147. European Commission. EDGAR — The emissions database for global atmospheric research. https://edgar.jrc.ec.europa.eu/country_profile/WORLD (дата обращения — 19.05.2024).
  148. Vogt E.T.C., Weckhuysen B.M. The refinery of the future // Nature. 2024. V. 629. № 8011. P. 295–306. https://doi.org/10.1038/s41586-024-07322-2
  149. Hoeppe P. Trends in weather related disasters — Consequences for insurers and society // Weather Clim. Extrem. 2016. V. 11. P. 70–79. https://doi.org/10.1016/J.WACE.2015.10.002
  150. Achakulwisut P., Erickson P., Guivarch C., Schaeffer R., Brutschin E., Pye S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions // Nat. Com. 2023. V. 14. № 1. P. 1–15. https://doi.org/10.1038/s41467-023-41105-z
  151. Jaccard M. Sustainable fossil fuels: the unusual suspect in the quest for clean and enduring energy. Cambridge University Press. 2006.
  152. Crippa M., Guizzardi D., Solazzo E., Muntean M., Schaaf E., Monforti-Ferrario F., Banja M., Olivier J.G.J., Grassi G., Rossi S., Vignati E. GHG Emissions of All World Countries. 2021 Report, EUR30831 EN, Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/173513
  153. Shugurov M. International cooperation on climate research and green technologies in the face of sanctions: The case of Russia // Green Fin. 2023. V. 5. № 2. P. 102–153. https://doi.org/10.3934/GF.2023006
  154. Liu S., Wang M., Cheng Q., He Y., Ni J., Liu J., Yan C., Qian T. Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules // ACS Nano. 2022. V. 16. № 11. P. 17911–17930. https://doi.org/10.1021/acsnano.2c09168
  155. Blay-Roger R., Nawaz M.A., Baena-Moreno F.M., Bobadilla L.F., Reina T.R., Odriozola J.A. Tandem catalytic approaches for CO2 enriched Fischer-Tropsch synthesis // Prog. Energy Combust. Sci. 2024. V. 103. ID101159. https://doi.org/10.1016/J.PECS.2024.101159
  156. Meng W., de Jong B.C.A., van de Bovenkamp H.V., Boer G.J., Leendert Bezemer G., Iulian Dugulan A., Xie J. Selectivity control between reverse water-gas shift and fischer-tropsch synthesis in carbon-supported iron-based catalysts for CO2 hydrogenation // Chem. Eng. J. 2024. V. 489. ID151166. https://doi.org/10.1016/J.CEJ.2024.151166
  157. Murciano R., Serra J.M., Martínez A. Direct hydrogenation of CO2 to aromatics via Fischer–Tropsch route over tandem K-Fe/Al2O3+H-ZSM-5 catalysts: Influence of zeolite properties // Catal. Today. 2024. V. 427. ID114404. https://doi.org/10.1016/J.CATTOD.2023.114404
  158. Gredig S.V., Koeppel R.A., Baiker A. Synthesis of methylamines from carbon dioxide and ammonia // J. Chem. Soc. Chem. Commun. 1995. № 1. P. 73–74. https://doi.org/10.1039/C39950000073
  159. Gredig S.V., Maurer R., Koeppel R.A., Baiker A. Copper-catalyzed synthesis of methylamines from CO2, H2 and NH3. Influence of support // J. Mol. Catal. A: Chem. 1997. V. 127. № 1–3. P. 133–142. https://doi.org/10.1016/S1381-1169(97)00117-9
  160. Auer S.M., Gredig S.V., Köppel R.A., Baiker A. Synthesis of methylamines from CO2, H2 and NH3 over Cu–Mg–Al mixed oxides // J. Mol. Catal. A: Chem. 1999. V. 141. № 1–3. P. 193–203. https://doi.org/10.1016/S1381-1169(98)00263-5
  161. Gredig S.V., Koeppel R.A., Baiker A. Synthesis of methylamines from CO2, H2 and NH // Catalytic behaviour of various metal-alumina catalysts. Appl. Catal. A: Gen. 1997. V. 162. № 1–2. P. 249–260. https://doi.org/10.1016/S0926-860X(97)00107-5
  162. Beydoun K., Thenert K., Streng E.S., Brosinski S., Leitner W., Klankermayer J. Selective synthesis of trimethylamine by catalytic N-мethylation of аmmonia and аmmonium сhloride by utilizing сarbon dioxide and molecular hydrogen // Chem. Cat. Chem. 2016. V. 8. № 1. P. 135–138. https://doi.org/10.1002/CCTC.201501116
  163. Kalck P., Urrutigoïty M. Tandem Hydroaminomethylation Reaction to Synthesize Amines from Alkenes // Chem. Rev. 2018. V. 118. № 7. P. 3833–3861. https://doi.org/10.1021/acs.chemrev.7b00667
  164. Knifton J.F. Primary amine syntheses from syngas, olefins and ammonia // Catal. Today. 1997. V. 36. № 3. P. 305–310. https://doi.org/10.1016/S0920-5861(96)00225-8
  165. Knifton J.F., Lin J.J. Syngas reactions Part XV. Primary amine syntheses from olefins, syngas and ammonia // J. Mol. Catal. 1993. V. 81. № 1. P. 27–36. https://doi.org/10.1016/0304-5102(93)80020-U
  166. Zimmermann B., Herwig J., Beller M. The first efficient hydroaminomethylation with ammonia: with dual metal catalysts and two-phase catalysis to primary amines // Angew. Chem. Int. Ed. 1999. V. 38. № 16. P. 2372–2375. https://doi.org/10.1002/(SICI)1521–3773 (19990816). 38:16<2372::AID-ANIE2372>3.0.CO;2-H
  167. Karakhanov E., Maksimov A., Kardasheva Y., Runova E., Zakharov R., Terenina M., Kenneally C., Arredondo V. Methylformate as replacement of syngas in one-pot catalytic synthesis of amines from olefins // Catal. Sci. Technol. 2014. V. 4. № 2. P. 540–547. https://doi.org/10.1039/C3CY00862B
  168. Fuchs S., Rösler T., Grabe B., Kampwerth A., Meier G., Strutz H., Behr A., Vorholt A. J. Synthesis of primary amines via linkage of hydroaminomethylation of olefins and splitting of secondary amines // Appl. Catal. A: Gen. 2018. V. 550. P. 198–205. https://doi.org/10.1016/J.APCATA.2017.11.010

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Amine demand in 2022 and projected consumption as of 2032 (adapted from [4]).

Download (74KB)
3. Fig. 2. Raw materials, intermediates and catalysts of the process of amine production from alcohols (adapted from [67]).

Download (43KB)
4. Fig. 3. Co-reduction of carbon oxides and nitrogen-containing compounds to form amines (adapted from [51]).

Download (27KB)
5. Fig. 4. Examples of C-N bond formation pathways in heterogeneous catalysis (adapted from [51]).

Download (28KB)
6. Fig. 5. Examples of C-N bond formation pathways in enzymatic catalysis (adapted from [51]).

Download (15KB)
7. Fig. 6. Examples of ω-transaminase oxidoreductase cascades (A) and (B): synthesis of primary chiral amines from the corresponding secondary alcohols (adapted from [94]).

Download (23KB)
8. Fig. 7. Example of the C-N bond formation pathway in molecular catalysis by Buchwald-Hartwig cross-coupling (adapted from [51]).

Download (18KB)
9. Fig. 8. Reaction for the preparation of amines according to Ritter.

Download (8KB)
10. Fig. 9. Reaction of isobutylene with ammonia on solid acid catalysts.

Download (16KB)
11. Fig. 10. Total regioselective reaction of amine addition to olefin (adapted from [57]).

Download (2KB)
12. Fig. 11. Mechanism of amine formation in the modified Fischer-Tropsch synthesis (adapted from [62]).

Download (25KB)
13. Fig. 12. Schematic of production of high value-added products by catalytic binding of carbon dioxide and ammonia.

Download (49KB)
14. Fig. 13. Possible pathways for the ruthenium-catalysed ammonia methylation reaction using CO2 as a source of the C1 fragment (adapted from [162]).

Download (20KB)

Copyright (c) 2024 Russian Academy of Sciences