Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The extracellular matrix (ECM) provides structural support and regulates cellular activity. Its disruption during metabolic pathologies or aging can lead to disease development. Developing ECM protectors is crucial for the etiological prevention and treatment of pathologies associated with ECM alterations. Key mechanisms of pathological changes in the ECM include non-enzymatic reactions such as glycation and glycoxidation. The potential of agents as ECM protectors can be assessed by their ability to inhibit these processes. In this study, compounds based on heterocyclic scaffolds, including partially hydrogenated isoindole fragments, were investigated for their ability to slow down the formation of advanced glycation end-products (AGEs). The study employed a combination of in silico and in vitro approaches. In the in silico study, the energies of the frontier molecular orbitals of the compounds were determined using the ab initio method with the 6-311G(d,p) basis set. Their antiglycation activity was then investigated in the glycation reaction of bovine serum albumin (BSA) with glucose, using albumin as a model protein. Pyridoxamine served as a reference compound. The antiglycation activity of the compounds was evaluated spectrofluorometrically by measuring the fluorescent products at excitation/emission wavelengths of 440/520 nm, which are not typically used for assessing antiglycation properties. At these wavelengths, glycation and oxidation products in human skin can be detected, which correlate with chronological age, unlike some other glycation products. Experimentally, it was found that the energies of the frontier molecular orbitals of the compounds can serve as predictors of their ability to slow down the formation of fluorescent products detected at 440/520 nm. Inhibiting the formation of such products may be significant for the treatment and prevention of diseases, including metabolic, fibrotic, or age-associated conditions. It was also established that at a concentration of 100 µM, the antiglycation properties are most pronounced in the series of hydrogenated 3a,6-epoxyisoindole-7-carboxylic acids (compounds of type XIII) and cyclopenta[b]furo[2,3-c]pyrrole-3-carboxylic acids (structures of type XIX).

全文:

受限制的访问

作者简介

U. Ibragimova

Volgograd State Medical University

编辑信件的主要联系方式.
Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066

N. Valuisky

Volgograd State Medical University

Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066

S. Sorokina

Volgograd State Medical University

Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066

X. Zhukova

Volgograd State Medical University

Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066

V. Raiberg

Volgograd State Medical University

Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066

R. Litvinov

Volgograd State Medical University; Volgograd Medical Scientific Center

Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066; Volgograd, 400066

参考

  1. Kular J.K., Basu S., Sharma R.I. (2014) The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 5, 2041731414557112. https://doi.org/10.1177/2041731414557112
  2. Zhang W., Liu Y., Zhang H. (2021) Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci. 11, 65. https://doi.org/10.1186/s13578-021-00579-4
  3. Godfrey M. (2009) Extracellular matrix. In: Asthma and COPD. Elsevier Ltd. 265–274. https://doi.org/10.1016/B978-0-12-374001-4.00022-5
  4. Dalal A.R., Pedroza A.J., Yokoyama N., Nakamura K., Shad R., Fischbein M.P. (2021) Abstract 13386: Extracellular matrix signaling in Marfan syndrome induced pluripotent stem cell derived smooth muscle cells. Circulation. 144, A13386. https://doi.org/10.1161/circ.144.suppl_1.13386
  5. Kingsbury K.D., Skeie J.M., Cosert K., Schmidt G.A., Aldrich B.T., Sales C.S., Weller J., Kruse F., Thomasy S.M., Schlötzer-Schrehardt U., Greiner M.A. (2023) Type II diabetes mellitus causes extracellular matrix alterations in the posterior cornea that increase graft thickness and rigidity. Invest. Ophthalmol. Vis. Sci. 64(7), 26. https://doi.org/10.1167/iovs.64.7.26
  6. Ziyadeh F.N. (1993) The extracellular matrix in diabetic nephropathy. Am. J. Kidney Dis. 22(5), 736–744. https://doi.org/10.1016/s0272-6386(12)80440-9
  7. Statzer C., Park J.Y.C., Ewald C.Y. (2023) Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. Aging. Dis. 14(3), 670–693. https://doi.org/10.14336/AD.2022.1116
  8. Wight T.N., Potter-Perigo S. (2011) The extracellular matrix: an active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 301(6), G950–G955. https://doi.org/10.1152/ajpgi.00132.2011
  9. Voziyan P., Uppuganti S., Leser M., Rose K.L., Nyman J.S. (2023) Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA Adv. 3, 100079. https://doi.org/10.1016/j.bbadva.2023.100079
  10. Duran-Jimenez B., Dobler D., Moffatt S., Rabbani N., Streuli C.H., Thornalley P.J., Tomlinson D.R., Gardiner N.J. (2009) Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes. 58(12), 2893–2903. https://doi.org/10.2337/db09-0320
  11. Sant S., Wang D., Agarwal R., Dillender S., Ferrell N. (2020) Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biol. Plus. 8, 100035. https://doi.org/10.1016/j.mbplus.2020.100035
  12. Kim H.J., Jeong M.S., Jang S.B. (2021) Molecular characteristics of RAGE and advances in small-molecule inhibitors. Int. J. Mol. Sci. 22(13), 6904. https://doi.org/10.3390/ijms22136904
  13. Ashwitha Rai K.S., Jyothi Rasmi R.R., Sarnaik J., Kadwad V.B., Shenoy K.B., Somashekarappa H.M. (2015) Preparation and characterization of (125) i labeled bovine serum albumin. Indian J. Pharm. Sci. 77(1), 107–110. https://doi.org/10.4103/0250-474x.151589
  14. Rombouts I., Lagrain B., Scherf K. A., Lambrecht M.A., Koehler P., Delcour J.A. (2015) Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci. Rep. 5, 12210. https://doi.org/10.1038/srep12210
  15. Kılıç Süloğlu A., Selmanoglu G., Gündoğdu Ö., Kishalı N.H., Girgin G., Palabıyık S., Tan A., Kara Y., Baydar T. (2020) Evaluation of isoindole derivatives: antioxidant potential and cytotoxicity in the HT-29 colon cancer cells. Arch. Pharm. (Weinheim). 353(11), e2000065. https://doi.org/10.1002/ardp.202000065
  16. Jahan H., Siddiqui N.N., Iqbal S., Basha F.Z., Khan M.A., Aslam T., Choudhary M.I. (2022) Indole-linked 1,2,3-triazole derivatives efficiently modulate COX-2 protein and PGE2 levels in human THP-1 monocytes by suppressing AGE-ROS-NF-kβ nexus. Life Sci. 291, 120282. https://doi.org/10.1016/j.lfs.2021.120282
  17. Shono T., Matsumura Y., Tsubata K., Inoue K., Nishida R. (1983) A new synthetic method of 1-azabicyclo[4.n.0]systems. Chem. Lett. 12(1), 21–24. https://doi.org/10.1246/cl.1983.21
  18. Varlamov A.V., Boltukhina E.V., Zubkov F.I., Sidorenko N.V., Chernyshev A.I., Grudinin D.G. (2004) Preparative synthesis of 7-carboxy-2-R-isoindol-1-ones. Chem. Heterocycl. Comp. 40, 22–28. https://doi.org/10.1023/B: COHC.0000023763.75894.63
  19. Toze F.A., Poplevin D.S., Zubkov F.I., Nikitina E.V., Porras C., Khrustalev V.N. (2015) Crystal structure of methyl (3RS,4SR,4aRS,11aRS,11bSR)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca-hydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylate. Acta Cryst. E Crystallogr. Commun. 71(Pt 10), o729–o730. https://doi.org/10.1107/S2056989015016679
  20. Zubkov F.I., Airiyan I.K., Ershova J.D., Galeev T.R., Zaytsev V.P., Nikitina E.V., Varlamov A.V. (2012) Aromatization of IMDAF adducts in aqueous alkaline media. RSC Adv. 2(10), 4103. https://doi.org/10.1039/c2ra20295f
  21. Boltukhina E.V., Zubkov F.I., Nikitina E.V., Varlamov A.V. (2005) Novel approach to isoindolo[2,1-a]quinolines: synthesis of 1- and 3-halo-substituted 11-oxo-5,6,6a,11-tetrahydroisoindolo[2,1-a]quinoline-10-carboxylic acids. Synthesis. 2005(11), 1859–1875. https://doi.org/10.1055/s-2005-869948
  22. Zubkov F.I., Boltukhina E.V., Turchin K.F., Borisov R.S., Varlamov A.V. (2005) New synthetic approach to substituted isoindolo[2,1-a]quinoline carboxylic acids via intramolecular Diels–Alder reaction of 4-(N-furyl-2)-4-arylaminobutenes-1 with maleic anhydride. Tetrahedron. 61(16), 4099‒4113. https://doi.org/10.1016/j.tet.2005.02.017
  23. Varlamov A.V., Zubkov F.I., Boltukhina E.V., Sidorenko N.V., Borisov R.S. (2003) A general strategy for the synthesis of oxoisoindolo[2,1-a]quinoline derivatives: the first efficient synthesis of 5,6,6a,11-tetrahydro-11-oxoisoindolo[2,1-a]quinoline-10-carboxylic acids. Tetrahedron Lett. 44(18), 3641–3643. https://doi.org/10.1016/S0040-4039(03)00705-6
  24. Firth J.D., Craven P.G.E., Lilburn M., Pahl A., Marsden S.P., Nelson A. (2016) A biosynthesis-inspired approach to over twenty diverse natural product-like scaffolds. Chem. Commun. 52, 9837–9840. https://doi.org/10.1039/c6cc04662b
  25. Zubkov F.I., Zaytsev V.P., Nikitina E.V., Khrustalev V.N., Gozun S.V., Boltukhina E.V., Varlamov A.V. (2011) Skeletal Wagner–Meerwein rearrangement of perhydro-3a,6;4,5-diepoxyisoindoles. Tetrahedron. 67(47), 9148–9163. https://doi.org/10.1016/j.tet.2011.09.099
  26. Antonova A.S., Vinokurova M.A., Kumandin P.A., Merkulova N.L., Sinelshchikova A.A., Grigoriev M.S., Novikov R.A., Kouznetsov V.V., Polyanskii K.B., Zubkov F.I. (2020) Application of new efficient Hoveyda-Grubbs catalysts comprising an N→Ru coordinate bond in a six-membered ring for the synthesis of natural product-like cyclopenta[b]furo[2,3-c]pyrroles. Molecules. 25(22), 5379. https://doi.org/10.3390/molecules25225379
  27. Cho S.J., Roman G., Yeboah F., Konishi Y. (2007) The road to advanced glycation end products: a mechanistic perspective. Curr. Med. Chem. 14(15), 1653–1671. https://doi.org/10.2174/092986707780830989
  28. Beisswenger P.J., Howell S., Mackenzie T., Corstjens H., Muizzuddin N., Matsui M.S. (2012) Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol. Ther. 14(3), 285–292. https://doi.org/10.1089/dia.2011.0108
  29. Weintraub R.A., Wang X. (2023) Recent developments in isoindole chemistry. Synthesis. 55(04), 519–546. https://doi.org/10.1055/s-0042-1751384
  30. Speck K., Magauer T. (2013) The chemistry of isoindole natural products. Beilstein J. Org. Chem. 9, 2048–2078. https://doi.org/10.3762/bjoc.9.243
  31. Upadhyay S.P., Thapa P., Sharma R., Sharma M. (2020) 1-Isoindolinone scaffold-based natural products with a promising diverse bioactivity. Fitoterapia. 146, 104722. https://doi.org/10.1016/j.fitote.2020.104722
  32. Csende F., Porkoláb A. (2020) Antiviral activity of isoindole derivatives. J. Med. Chem. Sci. 3(3), 254–285. https://doi.org/10.26655/jmchemsci.2020.3.7
  33. Bhatia R.K. (2017) Isoindole derivatives: propitious anticancer structural motifs. Curr. Top. Med. Chem. 17(2), 189–207. https://doi.org/10.2174/1568026616666160530154100
  34. Kirby I.T., Cohen M.S. (2019) Small-molecule inhibitors of PARPs: from tools for investigating ADP-ribosylation to therapeutics. Curr. Top. Microbiol. Immunol. 420, 211–231. https://doi.org/10.1007/82_2018_137
  35. Papeo G., Orsini P., Avanzi N.R., Borghi D., Casale E., Ciomei M., Cirla A., Desperati V., Donati D., Felder E.R., Galvani A., Guanci M., Isacchi A., Posteri H., Rainoldi S., Riccardi-Sirtori F., Scolaro A., Montagnoli A. (2019) Discovery of stereospecific PARP-1 inhibitor isoindolinone NMS-P515. ACS Med. Chem. Lett. 10(4), 534–538. https://doi.org/10.1021/acsmedchemlett.8b00569
  36. Ozerov A., Merezhkina D., Zubkov F.I., Litvinov R., Ibragimova U., Valuisky N., Borisov A., Spasov A. (2024) Synthesis and antiglycation activity of 3-phenacyl substituted thiazolium salts, new analogs of Alagebrium. Chem. Biol. Drug Des. 103(1), e14391. https://doi.org/10.1111/cbdd.14391
  37. Litvinov R.A., Vasil'ev P.M., Brel' A.K., Lisina S.V. (2021) Frontier molecular orbital energies as descriptors for prediction of antiglycating activity of N-hydroxybenzoyl-substituted thymine and uracil. Pharm. Chem. J. 55(7), 648–654. https://doi.org/10.1007/s11094-021-02474-1
  38. Savateev K., Fedotov V., Butorin I., Eltsov O., Slepukhin P., Ulomsky E., Rusinov V., Litvinov R., Babkov D., Khokhlacheva E., Radaev P., Vassiliev P., Spasov A. (2020) Nitrothiadiazolo[3,2-a]pyrimidines as promising antiglycating agents. Eur. J. Med. Chem. 185, 111808. https://doi.org/10.1016/j.ejmech.2019.111808

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structures of compounds I‒XIX.

下载 (334KB)
3. Fig. 2. Graphical representation of the correlation of the ranks of the antiglycerating activity of compounds and their calculated EHOMOa values.

下载 (121KB)

版权所有 © Russian Academy of Sciences, 2024