Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies
- 作者: Ibragimova U.M.1, Valuisky N.V.1, Sorokina S.A.1, Zhukova X.I.1, Raiberg V.R.1, Litvinov R.A.1,2
-
隶属关系:
- Volgograd State Medical University
- Volgograd Medical Scientific Center
- 期: 卷 58, 编号 6 (2024)
- 页面: 1052-1060
- 栏目: СТАРЕНИЕ И ГЕРОПРОТЕКТОРНЫЕ ТЕХНОЛОГИИ
- URL: https://ter-arkhiv.ru/0026-8984/article/view/677896
- DOI: https://doi.org/10.31857/S0026898424060153
- EDN: https://elibrary.ru/IACGIA
- ID: 677896
如何引用文章
详细
The extracellular matrix (ECM) provides structural support and regulates cellular activity. Its disruption during metabolic pathologies or aging can lead to disease development. Developing ECM protectors is crucial for the etiological prevention and treatment of pathologies associated with ECM alterations. Key mechanisms of pathological changes in the ECM include non-enzymatic reactions such as glycation and glycoxidation. The potential of agents as ECM protectors can be assessed by their ability to inhibit these processes. In this study, compounds based on heterocyclic scaffolds, including partially hydrogenated isoindole fragments, were investigated for their ability to slow down the formation of advanced glycation end-products (AGEs). The study employed a combination of in silico and in vitro approaches. In the in silico study, the energies of the frontier molecular orbitals of the compounds were determined using the ab initio method with the 6-311G(d,p) basis set. Their antiglycation activity was then investigated in the glycation reaction of bovine serum albumin (BSA) with glucose, using albumin as a model protein. Pyridoxamine served as a reference compound. The antiglycation activity of the compounds was evaluated spectrofluorometrically by measuring the fluorescent products at excitation/emission wavelengths of 440/520 nm, which are not typically used for assessing antiglycation properties. At these wavelengths, glycation and oxidation products in human skin can be detected, which correlate with chronological age, unlike some other glycation products. Experimentally, it was found that the energies of the frontier molecular orbitals of the compounds can serve as predictors of their ability to slow down the formation of fluorescent products detected at 440/520 nm. Inhibiting the formation of such products may be significant for the treatment and prevention of diseases, including metabolic, fibrotic, or age-associated conditions. It was also established that at a concentration of 100 µM, the antiglycation properties are most pronounced in the series of hydrogenated 3a,6-epoxyisoindole-7-carboxylic acids (compounds of type XIII) and cyclopenta[b]furo[2,3-c]pyrrole-3-carboxylic acids (structures of type XIX).
全文:

作者简介
U. Ibragimova
Volgograd State Medical University
编辑信件的主要联系方式.
Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066
N. Valuisky
Volgograd State Medical University
Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066
S. Sorokina
Volgograd State Medical University
Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066
X. Zhukova
Volgograd State Medical University
Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066
V. Raiberg
Volgograd State Medical University
Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066
R. Litvinov
Volgograd State Medical University; Volgograd Medical Scientific Center
Email: litvinov.volggmu@mail.ru
俄罗斯联邦, Volgograd, 400066; Volgograd, 400066
参考
- Kular J.K., Basu S., Sharma R.I. (2014) The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 5, 2041731414557112. https://doi.org/10.1177/2041731414557112
- Zhang W., Liu Y., Zhang H. (2021) Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci. 11, 65. https://doi.org/10.1186/s13578-021-00579-4
- Godfrey M. (2009) Extracellular matrix. In: Asthma and COPD. Elsevier Ltd. 265–274. https://doi.org/10.1016/B978-0-12-374001-4.00022-5
- Dalal A.R., Pedroza A.J., Yokoyama N., Nakamura K., Shad R., Fischbein M.P. (2021) Abstract 13386: Extracellular matrix signaling in Marfan syndrome induced pluripotent stem cell derived smooth muscle cells. Circulation. 144, A13386. https://doi.org/10.1161/circ.144.suppl_1.13386
- Kingsbury K.D., Skeie J.M., Cosert K., Schmidt G.A., Aldrich B.T., Sales C.S., Weller J., Kruse F., Thomasy S.M., Schlötzer-Schrehardt U., Greiner M.A. (2023) Type II diabetes mellitus causes extracellular matrix alterations in the posterior cornea that increase graft thickness and rigidity. Invest. Ophthalmol. Vis. Sci. 64(7), 26. https://doi.org/10.1167/iovs.64.7.26
- Ziyadeh F.N. (1993) The extracellular matrix in diabetic nephropathy. Am. J. Kidney Dis. 22(5), 736–744. https://doi.org/10.1016/s0272-6386(12)80440-9
- Statzer C., Park J.Y.C., Ewald C.Y. (2023) Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. Aging. Dis. 14(3), 670–693. https://doi.org/10.14336/AD.2022.1116
- Wight T.N., Potter-Perigo S. (2011) The extracellular matrix: an active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 301(6), G950–G955. https://doi.org/10.1152/ajpgi.00132.2011
- Voziyan P., Uppuganti S., Leser M., Rose K.L., Nyman J.S. (2023) Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA Adv. 3, 100079. https://doi.org/10.1016/j.bbadva.2023.100079
- Duran-Jimenez B., Dobler D., Moffatt S., Rabbani N., Streuli C.H., Thornalley P.J., Tomlinson D.R., Gardiner N.J. (2009) Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes. 58(12), 2893–2903. https://doi.org/10.2337/db09-0320
- Sant S., Wang D., Agarwal R., Dillender S., Ferrell N. (2020) Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biol. Plus. 8, 100035. https://doi.org/10.1016/j.mbplus.2020.100035
- Kim H.J., Jeong M.S., Jang S.B. (2021) Molecular characteristics of RAGE and advances in small-molecule inhibitors. Int. J. Mol. Sci. 22(13), 6904. https://doi.org/10.3390/ijms22136904
- Ashwitha Rai K.S., Jyothi Rasmi R.R., Sarnaik J., Kadwad V.B., Shenoy K.B., Somashekarappa H.M. (2015) Preparation and characterization of (125) i labeled bovine serum albumin. Indian J. Pharm. Sci. 77(1), 107–110. https://doi.org/10.4103/0250-474x.151589
- Rombouts I., Lagrain B., Scherf K. A., Lambrecht M.A., Koehler P., Delcour J.A. (2015) Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci. Rep. 5, 12210. https://doi.org/10.1038/srep12210
- Kılıç Süloğlu A., Selmanoglu G., Gündoğdu Ö., Kishalı N.H., Girgin G., Palabıyık S., Tan A., Kara Y., Baydar T. (2020) Evaluation of isoindole derivatives: antioxidant potential and cytotoxicity in the HT-29 colon cancer cells. Arch. Pharm. (Weinheim). 353(11), e2000065. https://doi.org/10.1002/ardp.202000065
- Jahan H., Siddiqui N.N., Iqbal S., Basha F.Z., Khan M.A., Aslam T., Choudhary M.I. (2022) Indole-linked 1,2,3-triazole derivatives efficiently modulate COX-2 protein and PGE2 levels in human THP-1 monocytes by suppressing AGE-ROS-NF-kβ nexus. Life Sci. 291, 120282. https://doi.org/10.1016/j.lfs.2021.120282
- Shono T., Matsumura Y., Tsubata K., Inoue K., Nishida R. (1983) A new synthetic method of 1-azabicyclo[4.n.0]systems. Chem. Lett. 12(1), 21–24. https://doi.org/10.1246/cl.1983.21
- Varlamov A.V., Boltukhina E.V., Zubkov F.I., Sidorenko N.V., Chernyshev A.I., Grudinin D.G. (2004) Preparative synthesis of 7-carboxy-2-R-isoindol-1-ones. Chem. Heterocycl. Comp. 40, 22–28. https://doi.org/10.1023/B: COHC.0000023763.75894.63
- Toze F.A., Poplevin D.S., Zubkov F.I., Nikitina E.V., Porras C., Khrustalev V.N. (2015) Crystal structure of methyl (3RS,4SR,4aRS,11aRS,11bSR)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca-hydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylate. Acta Cryst. E Crystallogr. Commun. 71(Pt 10), o729–o730. https://doi.org/10.1107/S2056989015016679
- Zubkov F.I., Airiyan I.K., Ershova J.D., Galeev T.R., Zaytsev V.P., Nikitina E.V., Varlamov A.V. (2012) Aromatization of IMDAF adducts in aqueous alkaline media. RSC Adv. 2(10), 4103. https://doi.org/10.1039/c2ra20295f
- Boltukhina E.V., Zubkov F.I., Nikitina E.V., Varlamov A.V. (2005) Novel approach to isoindolo[2,1-a]quinolines: synthesis of 1- and 3-halo-substituted 11-oxo-5,6,6a,11-tetrahydroisoindolo[2,1-a]quinoline-10-carboxylic acids. Synthesis. 2005(11), 1859–1875. https://doi.org/10.1055/s-2005-869948
- Zubkov F.I., Boltukhina E.V., Turchin K.F., Borisov R.S., Varlamov A.V. (2005) New synthetic approach to substituted isoindolo[2,1-a]quinoline carboxylic acids via intramolecular Diels–Alder reaction of 4-(N-furyl-2)-4-arylaminobutenes-1 with maleic anhydride. Tetrahedron. 61(16), 4099‒4113. https://doi.org/10.1016/j.tet.2005.02.017
- Varlamov A.V., Zubkov F.I., Boltukhina E.V., Sidorenko N.V., Borisov R.S. (2003) A general strategy for the synthesis of oxoisoindolo[2,1-a]quinoline derivatives: the first efficient synthesis of 5,6,6a,11-tetrahydro-11-oxoisoindolo[2,1-a]quinoline-10-carboxylic acids. Tetrahedron Lett. 44(18), 3641–3643. https://doi.org/10.1016/S0040-4039(03)00705-6
- Firth J.D., Craven P.G.E., Lilburn M., Pahl A., Marsden S.P., Nelson A. (2016) A biosynthesis-inspired approach to over twenty diverse natural product-like scaffolds. Chem. Commun. 52, 9837–9840. https://doi.org/10.1039/c6cc04662b
- Zubkov F.I., Zaytsev V.P., Nikitina E.V., Khrustalev V.N., Gozun S.V., Boltukhina E.V., Varlamov A.V. (2011) Skeletal Wagner–Meerwein rearrangement of perhydro-3a,6;4,5-diepoxyisoindoles. Tetrahedron. 67(47), 9148–9163. https://doi.org/10.1016/j.tet.2011.09.099
- Antonova A.S., Vinokurova M.A., Kumandin P.A., Merkulova N.L., Sinelshchikova A.A., Grigoriev M.S., Novikov R.A., Kouznetsov V.V., Polyanskii K.B., Zubkov F.I. (2020) Application of new efficient Hoveyda-Grubbs catalysts comprising an N→Ru coordinate bond in a six-membered ring for the synthesis of natural product-like cyclopenta[b]furo[2,3-c]pyrroles. Molecules. 25(22), 5379. https://doi.org/10.3390/molecules25225379
- Cho S.J., Roman G., Yeboah F., Konishi Y. (2007) The road to advanced glycation end products: a mechanistic perspective. Curr. Med. Chem. 14(15), 1653–1671. https://doi.org/10.2174/092986707780830989
- Beisswenger P.J., Howell S., Mackenzie T., Corstjens H., Muizzuddin N., Matsui M.S. (2012) Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol. Ther. 14(3), 285–292. https://doi.org/10.1089/dia.2011.0108
- Weintraub R.A., Wang X. (2023) Recent developments in isoindole chemistry. Synthesis. 55(04), 519–546. https://doi.org/10.1055/s-0042-1751384
- Speck K., Magauer T. (2013) The chemistry of isoindole natural products. Beilstein J. Org. Chem. 9, 2048–2078. https://doi.org/10.3762/bjoc.9.243
- Upadhyay S.P., Thapa P., Sharma R., Sharma M. (2020) 1-Isoindolinone scaffold-based natural products with a promising diverse bioactivity. Fitoterapia. 146, 104722. https://doi.org/10.1016/j.fitote.2020.104722
- Csende F., Porkoláb A. (2020) Antiviral activity of isoindole derivatives. J. Med. Chem. Sci. 3(3), 254–285. https://doi.org/10.26655/jmchemsci.2020.3.7
- Bhatia R.K. (2017) Isoindole derivatives: propitious anticancer structural motifs. Curr. Top. Med. Chem. 17(2), 189–207. https://doi.org/10.2174/1568026616666160530154100
- Kirby I.T., Cohen M.S. (2019) Small-molecule inhibitors of PARPs: from tools for investigating ADP-ribosylation to therapeutics. Curr. Top. Microbiol. Immunol. 420, 211–231. https://doi.org/10.1007/82_2018_137
- Papeo G., Orsini P., Avanzi N.R., Borghi D., Casale E., Ciomei M., Cirla A., Desperati V., Donati D., Felder E.R., Galvani A., Guanci M., Isacchi A., Posteri H., Rainoldi S., Riccardi-Sirtori F., Scolaro A., Montagnoli A. (2019) Discovery of stereospecific PARP-1 inhibitor isoindolinone NMS-P515. ACS Med. Chem. Lett. 10(4), 534–538. https://doi.org/10.1021/acsmedchemlett.8b00569
- Ozerov A., Merezhkina D., Zubkov F.I., Litvinov R., Ibragimova U., Valuisky N., Borisov A., Spasov A. (2024) Synthesis and antiglycation activity of 3-phenacyl substituted thiazolium salts, new analogs of Alagebrium. Chem. Biol. Drug Des. 103(1), e14391. https://doi.org/10.1111/cbdd.14391
- Litvinov R.A., Vasil'ev P.M., Brel' A.K., Lisina S.V. (2021) Frontier molecular orbital energies as descriptors for prediction of antiglycating activity of N-hydroxybenzoyl-substituted thymine and uracil. Pharm. Chem. J. 55(7), 648–654. https://doi.org/10.1007/s11094-021-02474-1
- Savateev K., Fedotov V., Butorin I., Eltsov O., Slepukhin P., Ulomsky E., Rusinov V., Litvinov R., Babkov D., Khokhlacheva E., Radaev P., Vassiliev P., Spasov A. (2020) Nitrothiadiazolo[3,2-a]pyrimidines as promising antiglycating agents. Eur. J. Med. Chem. 185, 111808. https://doi.org/10.1016/j.ejmech.2019.111808
补充文件
