The significance of membrane segments M6 and M8 in the biogenesis and functioning of the yeast PMA1 H+-ATPase

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract. The membrane domain of PMA1 H+-ATPase of the yeast plasma membrane is formed by 10 transmembrane segments (M1–M10), of which segments M6 and M8 are especially important. To study them, alanine-scanning mutagenesis was used, replacing each of the residues forming the segments with alanine. The enzymes were expressed from the plasmid pma1 gene in secretory vesicles under heat shock. In M6, half of the mutant proteins lost activity (0–7%), but were expressed at a level of 15–87% of the wild type. In M8, one third of the mutants showed a block in biogenesis (0–7%) or a significant decrease in expression (up to 16–17%), accompanied by an almost complete loss of enzymatic activity (0–10%). Since expression in secretory vesicles requires the use of elevated temperatures, the effect of mutations causing disturbance of expression and ATPase activity on the biogenesis and functioning of the enzyme in the absence of heat shock was tested by expressing them in plasma membranes from the chromosomal PMA1 gene at a permissive temperature. In the case of M6, only one mutant (F728A) out of the ten inactive enzymes was expressed in the plasma membrane and had activity at the wild type level; the remaining mutants were nonviable. In the case of M8, only mutants Q798A and I799A were unable to express at the plasma membrane level, while I794A, F796A, L797A, and L801A were expressed by 35–89% and had an activity of 14–65% of the wild type level. The effect of mutations F728A and F796A on the structural and functional organization of PMA1 ATPase and its regulation due to glucose-dependent activation of the enzyme was compared. Both mutations reduced ATPase activity by 30–50% and the degree of its activation by 30–40%. The data allow us to conclude that substitutions in the M6 segment primarily affect the functioning of the enzyme and, to a lesser extent, its conformation and biogenesis, suggesting the participation of the studied amino acid residues in the transport process. Residues in M8, on the contrary, play a major role in ATPase biogenesis. Overall, the results confirm the important role of amino acid residues in M6 and M8 for the structural and functional organization of PMA1 H+-ATPase and indicate that M6 contains more residues that affect the functioning of the enzyme.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Petrov

FRC “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Хат алмасуға жауапты Автор.
Email: vpetrov07@gmail.com

Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences

Ресей, Pushchino, Moscow Region, 142290

Әдебиет тізімі

  1. Окороков Л. А., Петров В. В. Выделение везикул плазматических мембран дрожжей Saccharomyces carlsbergensis, пригодных для исследования транспорта веществ // Биол. мембраны. 1986. Т. 3. С. 549–556.
  2. Петров В. В. Точечные мутации в Pma1 Н+-АТРазе дрожжей Saccharomyces cerevisiae: влияние на ее экспрессию и активность // Биохимия. 2010. Т. 75. С. 1070–1080.
  3. Petrov V. V. Point mutations in Pma1 H+ATPase of Saccharomyces cerevisiae: influence on its expression and activity // Biochemistry (Moscow). 2010. V. 75. P. 1055–1170.
  4. Петров В. В. Роль петли L5-6, соединяющей мембранные сегменты М5 и М6, в биогенезе и функционировании Pma1 Н+-АТРазы дрожжей // Биохимия. 2015. Т. 80. С. 41–58.
  5. Petrov V. V. Role of loop L56 connecting transmembrane segments M5 and M6 in biogenesis and functioning of yeast Pma1 H+ATPase // Biochemistry (Moscow). 2015. V. 80. P. 31–41.
  6. Петров В. В. Влияние мутаций в экстрацитозольном домене H+-АТФазы плазматической мембраны дрожжей Saccharomyces cerevisiae на ее активность и регуляцию // Микробиология. 2023. Т. 92. С. 329–334.
  7. Petrov V. V. Effect of mutations in the extracytosolic domain of the Saccharomyces cerevisiae H+-ATPase on its activity and regulation // Microbiology (Moscow). 2023. V. 92. P. 468–473.
  8. Ambesi A., Miranda M., Petrov V. V., Slayman C. W. Biogenesis and function of the yeast plasma-membrane H+-ATPase // J. Exp. Biol. 2000. V. 203. P. 156–160.
  9. Andersen J. P., Vilsen B. Amino acids Asn796 and Thr799 of the Ca2+-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites // J. Biol. Chem. 1994. V. 269. P. 15931–15936.
  10. Asano S., Io T., Kimura T., Sakamoto S., Takeguchi N. Alanine-scanning mutagenesis of the sixth transmembrane segment of gastric H+,K+-ATPase alpha-subunit // J. Biol. Chem. 2001. V. 276. P. 31265–31273.
  11. Axelsen K. B., Palmgren M. G. Evolution of substrate specificities in the P-type ATPase superfamily // J. Mol. Evol. 1998. V. 46. P. 84–101.
  12. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials // Anal. Biochem. 1976. V. 70. P. 241–250.
  13. Buch-Pedersen M.J., Venema K., Serrano R., Palmgren M. G. Abolishment of proton pumping and accumulation in the E1P conformational state of a plant plasma membrane H+-ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6 // J. Biol. Chem. 2000. V. 275. P. 39167–39173.
  14. Buch-Pedersen M.J., Palmgren M. G. Conserved Asp684 in transmembrane segment M6 of the plant plasma membrane P-type proton pump AHA2 is molecular determinant of proton translocation // J. Biol. Chem. 2003. V. 278. P. 17845–17851.
  15. Chang A., Slayman C. W. Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport // J. Cell. Biol. 1991. V. 115. P. 289–295.
  16. Ferreira T., Mason A. B., Pypaert M., Allen K. E., Slayman C. W. Quality control in the yeast secretory pathway: a misfolded PMA1 H+-ATPase reveals two checkpoints // J. Biol. Chem. 2002. V. 277. P. 21027–21040.
  17. Fiske C. H., Subbarow Y. The colorometric determination of phosphorus // J. Biol. Chem. 1925. V. 66. P. 375–400.
  18. Heit S., Geurts M. M.G., Murphy B. J., Corey R. A., Mills D. J., Kühlbrandt W., Bublitz M. Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state // Sci. Adv. 2021. V. 7. Art. eabj5255. https://doi.org/10.1126/sciadv.abj5255
  19. Hermsen H. P., Koenderink J. B., Swarts H. G.P., De Pont J. J. The negative charge of glutamic acid-795 is essential for gastric H+,K+-ATPase activity // Biochemistry. 1998. V. 39. P. 1330–1337.
  20. Hermsen H. P., Swarts H. G.P., Koenderink J. B., De Pont J. J. The carbonyl group of glutamic acid-820 in the gastric H+,K+-ATPase alpha-subunit is essential for K+ activation of the enzyme activity // Biochem. J. 2000. V. 331. P. 465–472.
  21. Guerra G., Petrov V. V., Allen K. E., Miranda M., Pardo J. P., Slayman C. W. Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H+-ATPase // Biochim. Biophys. Acta. 2007. V. 1768. P. 2383–2392.
  22. Jewell-Motz E.A., Lingrel J. B. Site-directed mutagenesis of the Na,K-ATPase: consequences of substitutions of negatively-charged amino acids localized in the transmembrane domains // Biochemistry. 1993. V. 32. P. 13523–13530.
  23. Kanai R., Ogawa H., Vilsen B., Cornelius F., Toyoshima C. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state // Nature. 2013. V. 502. P. 201–206.
  24. Kuntzweiler T. A., Arguello J. M., Lingrel J. B. Asp804 and Asp808 in the transmembrane domain of the Na,K-ATPase a subunit are cation coordinating residues // J. Biol. Chem. 1996. V. 271. P. 29682–29687.
  25. Lecchi S., Allen K. E., Pardo J. P., Mason A. B., Slayman C. W. Conformational changes of yeast plasma membrane H+-ATPase during activation by glucose: role of threonine-912 in the carboxy-terminal tail // Biochemistry. 2005. V. 44. P. 16624–16632.
  26. Lecchi S., Nelson C. J., Allen K. E., Swaney D. L., Thompson K. L., Coon J. J., Sussman M. R., Slayman C. W. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation // J. Biol. Chem. 2007. V. 282. P. 35471–35481.
  27. Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity // Biochemistry. 1995. V. 34. P. 15607–15613.
  28. Mandal D., Woolf T. B., Rao R. Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue Gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport // J. Biol. Chem. 2000. V. 275. P. 23933–23938.
  29. Mazon M. J., Eraso P., Portillo F. Specific phosphoantibodies reveal two phosphorylation sites in yeast Pma1 in response to glucose // FEMS Yeast Research. 2015, V. 15, P. 1-9.
  30. Miranda M., Pardo J. P., Petrov V. V. Structure-function relationships in membrane segment 6 of the yeast plasma membrane Pma1 H+-ATPase // Biochim. Biophys. Acta. 2011. V. 1808. P. 1781–1789.
  31. Morth J. P., Pedersen B. P., Toustrup-Jensen M.S., Sorensen T. L., Petersen J., Andersen J. P., Vilsen B., Nissen P. Crystal structure of the sodium-potassium pump // Nature. 2007. V. 450. P. 1043–1049.
  32. Morsomme P., Slayman C. W., Goffeau A. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase // Biochim. Biophys. Acta. 2000. V. 1469. P. 133–157.
  33. Nakamoto R. K., Rao R., Slayman C. W. Expression of the yeast plasma membrane H+-ATPase in secretory vesicles. A new strategy for directed mutagenesis // J. Biol. Chem. 1991. V. 266. P. 7940–7949.
  34. Nielsen J. M., Pedersen P. A., Karlish S. J.D., Jørgensen P. L. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase // Biochemistry. 1998. V. 37. P. 1961–1968.
  35. Nyblom M., Poulsen H., Gourdon P., Reinhard L., Andersson M., Lindahl E., Fedosova N., Nissen P. Crystal structure of Na+, K+-ATPase in the Na+-bound state // Science. 2013. V. 342. P. 123–127.
  36. Ogawa H., Shinoda T., Cornelius F., Toyoshima C. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 13742–13747.
  37. Pedersen B. P., Buch-Pedersen M., Morth J. J.P., Palmgren M. G., Nissen P. Crystal structure of the plasma membrane proton pump // Nature. 2007. V. 450. P. 1111–1114.
  38. Petrov V. V. Point mutations in the extracytosolic loop between transmembrane segments M5 and M6 of the yeast Pma1 H+-ATPase: alanine-scanning mutagenesis // J. Biomol. Struct. Dyn. 2015. V. 33. P. 70–84.
  39. Petrov V. V., Padmanabha K. P., Nakamoto R. K., Allen K. E., Slayman C. W. Functional role of charged residues in the transmembrane segments of the yeast plasma membrane H+-ATPase // J. Biol. Chem. 2000. V. 275. P. 15709–15716.
  40. Petrov V. V., Slayman C. W. Site-directed mutagenesis of the yeast PMA1 H+-ATPase. Structural and functional role of cysteine residues // J. Biol. Chem. 1995. V. 270. P. 28535–28540.
  41. Rice W. J., MacLennan D. H. Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a) // J. Biol. Chem. 1996. V. 271. P. 31412–31419.
  42. Robles-Martinez L., Pardo J. P., Miranda M., Mendez T. L., Matus-Ortega M.G., Mendoza-Hernandez G., Guerra-Sanchez G. The basidiomycete Ustilago maydis has two plasma membrane H+-ATPases related to fungi and plants // J. Bioenerg. Biomembr. 2013. V. 45. P. 477–490.
  43. Serrano R. In vivo glucose activation of the yeast plasma membrane ATPase // FEBS Lett. 1983. V. 156. P. 11–14.
  44. Shinoda T., Ogawa H., Cornelius F., Toyosima C. Crystal structure of the sodium-potassium pump at 2.4 Å resolution // Nature. 2009. V. 459. P. 446–450.
  45. Syhrova H., Kotyk A. Conditions of activation of yeast plasma membrane ATPase // FEBS Lett. 1985. V. 183. P. 21–24.
  46. Takahashi M., Kondou Y., Toyoshima C. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 5800–5805.
  47. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice // Nucleic Acids Res. 1994. V. 22. P. 4673–4680.
  48. Toyoshima C., Iwasawa S., Ogawa H., Hirata A., Tsueda J., Inesi G. Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state // Nature. 2013. V. 495. P. 260–264.
  49. Toyosima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution // Nature. 2000. V. 405. P. 647–655.
  50. Toyosima C., Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium // Nature. 2002. V. 418. P. 605–611.
  51. Toyoshima C., Norimatsu Y., Iwasawa S., Tsuda T., Ogawa H. How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 19831–19836.
  52. Vilsen B., Andersen J. P. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms // Biochemistry. 1998. V. 37. P. 10961–10971.
  53. Wei Y., Chen J., Rosas G., Tompkins D. A., Holt P. A., Rao R. Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport // J. Biol. Chem. 2000. V. 275. P. 23927–23932.
  54. Young M. R., Heit S., Bublitz M. Structure, function and biogenesis of the fungal proton pump Pma1 // Biochim. Biophys. Acta. 2024. V. 1871. P. 119600.
  55. Zhang Z., Lewis D., Strock C., Inesi G., Nakasako M., Nomura H., Toyoshima C. Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase // Biochemistry. 2000. V. 39. P. 8758–8767.
  56. Zhao P., Zhao C., Chen D., Yun C., Li H., Bai L. Structure and activation mechanism of the hexameric plasma membrane H+-ATPase // Nature Commun. 2021. V. 12. P. 6439–6450.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Comparison of amino acid sequences of the transmembrane segment M6 of PMA1 H+-ATPase from yeast S. cerevisiae and H+-ATPases from plasma membranes of various fungi, algae and plants. Amino acid residues of the M6 ​​segment of PMA1 H+-ATPase from S. cerevisiae and identical amino acid residues in other ATPases are shown in bold and gray, homologous residues are shown in bold. Asp-730 and Asp-739 are shown in larger size.

Жүктеу (936KB)
3. Fig. 2. Comparison of amino acid sequences of the transmembrane segment M8 of PMA1 H+-ATPase from S. cerevisiae yeast and H+-ATPases from plasma membranes of various fungi, algae and plants. Ile-794, Phe-796, Leu-797, Gln-798, Ile-799, Leu-801, Glu-803, Ile-807 and the corresponding amino acid residues in other ATPases are shown in bold and gray; homologous residues are shown in bold. Glu-803 is shown in larger size.

Жүктеу (948KB)
4. Fig. 3. Comparison of amino acid sequences of transmembrane segments M6 and M8 of PMA1 H+-ATPase from S. cerevisiae and Ca2+-, H+,K+-, and Na+,K+-ATPases from animals. Amino acid residues of segments M6 and M8 of PMA1 H+-ATPase from S. cerevisiae and identical amino acid residues in other ATPases are shown in bold and gray; homologous residues are shown in bold. See also legends to Figs. 1 and 2.

Жүктеу (245KB)

© Russian Academy of Sciences, 2025