Optimal and critical climatic seed transfer distance of Scots pine in the coniferous-broadleaf forests zone
- Authors: Lebedev A.V.1, Dvoychenkov K.I.1
-
Affiliations:
- Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
- Issue: No 3 (2025)
- Pages: 388–408
- Section: RESEARCH
- URL: https://ter-arkhiv.ru/0024-1148/article/view/688887
- DOI: https://doi.org/10.31857/S0024114825030082
- EDN: https://elibrary.ru/HCSXWC
- ID: 688887
Cite item
Abstract
To maintain forest productivity and conservation, it is necessary to ensure the transfer of seeds for the creation of forest plantations in accordance with the scale and direction of climate change. The aim of this study was to analyse historical data on the growth and survival of Scots pine (Pinus sylvestris L.) of various provenances to assess the optimal and critical climatic seed transfer distance to the coniferous-broadleaf forests of the European Russia. The study was based on data on average heights and diameters at 17 years and tree survival at 5 years for 54 pine populations from the East European Plain and south-eastern Europe in plantations of the Kovrovsky district of the Vladimir region. The effect of genotype on phenotypic parameters of populations was estimated using a transfer function that included ecological distances of the number of days with average daily temperatures exceeding 5°C and annual precipitation. Under past and current climate conditions, seeds of local populations can be recommended for planting. By 2041—2070, according to model estimates, there will be a shift in the optimal areas of seed transfer in the south-western direction, thus, as a result of rapid climate change, local populations will show a decrease in productivity relative to those transferred from other areas and having better adaptation to new conditions. Dynamic forest seed zoning has been proposed as one of the tools for implementing the principles of climate-smart forestry in Russia.
Full Text

About the authors
A. V. Lebedev
Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
Author for correspondence.
Email: avl1993@mail.ru
Russian Federation, Timiryazevskaya st., 49, Moscow, 127434
K. I. Dvoychenkov
Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
Email: avl1993@mail.ru
Russian Federation, Timiryazevskaya st., 49, Moscow, 127434
References
- Aitken S.N., Yeaman S., Holliday J.A., Wang T., Curtis-McLane S., Adaptation, migration or extirpation: Climate change outcomes for tree population, Evolutionary Applications, 2008, Vol. 1(1), pp. 95—111. doi: 10.1111/j.1752-4571.2007.00013.x.
- Aleksandrov G.A., Prokazin N.E., Bioklimaticheskie ramochnye modeli dlya klimatipov lesnykh drevesnykh porod (Bioclimatic framework models for forest tree species provenances), Forestry Information, 2018, No. 1, pp. 90—102. doi: 10.24419/LHI.2304-3083.2018.1.08.
- Ali A., Sanaei A., Li M., Nalivan O.A., Ahmadaali K., Pour M.J., Valipour A., Karami J., Aminpour M., Kaboli H., Askari Y., Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests, Science of the Total Environment, 2020, Vol. 706, article id 135719. doi: 10.1016/j.scitotenv.2019.135719.
- Alía R., Notivol E., Climent J., Pérez F., Barba D., Majada J., García Del Barrio J.M., Local seed sourcing for sustainable forestry, PLoS One, 2022, Vol. 17(12), article id e0278866. doi: 10.1371/journal.pone.0278866.
- Avla A. Kh.K., Alekseev A.S., Otsenka potentsiala rosta lesov v Irakskom Kurdistane na osnove analiza meteoklimaticheskikh dannykh (Assessment of the forests growth potential in Iraqi Kurdistan based on the analysis of hydro meteorological data), Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2024, No. 249, pp. 38—54. doi: 10.21266/2079-4304.2024.249.38—54.
- Baythavong B.S., Stanton M.L., Characterizing Selection on Phenotypic Plasticity in Response to Natural Environmental Heterogeneity, Evolution, 2010, Vol. 64(10), pp. 2904—2920. doi: 10.1111/j.1558-5646.2010.01057.x.
- Benavides R., Roig S., Osoro K., Potential productivity of forested areas based on a biophysical model. A case study of a mountainous region in northern Spain, Annals of Forest Science, 2009, Vol. 66(1), article id 108. doi: 10.1051/forest/2008080.
- Bennett A.C., Penman T.D., Arndt S.K., Roxburgh S.H., Bennett L.T., Climate more important than soils for predicting forest biomass at the continental scale, Ecography, 2020, Vol. 43(11), pp. 1692—1705. doi: 10.1111/ecog.05180.
- Blattert C., Mönkkönen M., Burgas D., Fulvio F.D., Caicoya A.T., Vergarechea M., Klein J., Hartikainen M., Antón-Fernández C., Astrup R., Emmerich M., Forsell N., Lukkarinen J., Lundström J., Pitzén S., Poschenrieder W., Primmer E., Snäll T., Eyvindson K., Climate targets in European timber-producing countries conflict with goals on forest ecosystem services and biodiversity, Communication Earth & Environment, 2023, Vol. 4(1), article id e119. doi: 10.1038/s43247-023-00771-z.
- Booth T.H., Identifying particular areas for potential seed collections for restoration plantings under climate change, Ecological Management & Restoration, 2016, Vol. 17, pp. 228—234. doi: 10.1111/emr.12219.
- Boshier D., Broadhurst L., Cornelius J., Gallo L., Koskela J., Loo J., Petrokofsky J., St Clair B., Is local best? Examining the evidence for local adaptation in trees and its scale, Environmental Evidence, 2015, Vol. 4, article id 20. doi: 10.1186/s13750-015-0046-3.
- Breed M.F., Stead M.G., Ottewell K.M., Gardner M.G., Lowe A.J., Which provenance and where? Seed sourcing strategies for revegetation in a changing environment, Conservation Genetics, 2013, Vol. 14, pp. 1—10. doi: 10.1007/s10592-012-0425-z.
- Broadhurst L.M., Lowe A., Coates D.J., Cunningham S.A., McDonald M., Vesk P.A., Yates C., Seed supply for broadscale restoration: Maximizing evolutionary potential, Evolutionary Applications, 2008, Vol. 1, pp. 587—597. doi: 10.1111/j.1752—4571.2008.00045.x.
- Bucharova A., Bossdorf O., Hölzel N., Kollmann J., Prasse R., Durka W., Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration, Conservation Genetics, 2018, Vol. 20, pp. 7—17. doi: 10.1007/s10592-018-1067-6.
- Carter K.K., Provenance tests as Indicators of growth response to climate change in 10 north temperate tree species, Canadian Journal of Forest Research, 1996, Vol. 26(6), pp. 1089—1095. doi: 10.1139/x26-120.
- Castellanos-Acuña D., Vance-Borland K.W., St. Clair J.B., Hamann A., López-Upton J., Gómez-Pineda E., Ortega-Rodríguez J.M., Sáenz-Romero C., Climate-based seed zones for Mexico: Guiding reforestation under observed and projected climate change, New Forests, 2014, Vol. 49(3), pp. 297—309. doi: 10.1007/s11056-017-9620-6.
- Caudullo G., Welk E., San-Miguel-Ayanz J., Chorological data for the main European woody species, Mendeley Data, 2024, Vol. 18. doi: 10.17632/hr5h2hcgg4.18.
- Celis N., Casallas A., Lopez-Barrera E.A., Felician M., De Marchi M., Pappalardo S.E., Climate Change, Forest Fires, and Territorial Dynamics in the Amazon Rainforest: An Integrated Analysis for Mitigation Strategies, ISPRS International Journal of Geo-Information, 2023, Vol. 12, article id 436. doi: 10.3390/ijgi12100436.
- Chen X., Luo M., Larjavaara M., Effects of climate and plant functional types on forest above-ground biomass accumulation, Carbon Balance Manag, 2023, Vol. 18(1), article id 5. doi: 10.1186/s13021-023-00225-1.
- Chernen’kova T.V., Puzachenko M. Yu., Belyaeva N.G., Kotlov I.P., Morozova O.V., Kharakteristika i perspektivy sokhraneniya sosnovykh lesov Moskovskoi oblasti (Pine forests in Moscow region: history and perspectives of preservation), Lesovedenie, 2019, No. 5, pp. 449—464. doi: 10.1134/S0024114819050024.
- Degtyareva A.P., Sosna obyknovennaya v izmenyayushchikhsya klimaticheskikh usloviyakh Tsentral’nogo Chernozem’ya (Scots pine in changing climatic conditions of the Central Chernozem region), Byulleten’ Gosudarstvennogo Nikitskogo botanicheskogo sada, 2022, No. 144, pp. 14—18. doi: 10.36305/0513-1634-2022-144-14-18.
- Dubenok N.N., Lebedev A.V., Gradusov V.M., Potentsial’naya produktivnost’ lesov Moskovskogo regiona v svyazi s klimaticheskimi izmeneniyami (Potential productivity of forests of the Moscow region in connection with climatic changes), Prirodoobustrojstvo, 2023, No. 5, pp. 118—124. doi: 10.26897/1997601120235-118-124.
- Etterson J.R., Cornett M.W., White M.A., Kavajecz L.C., Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species, Ecological Applications, 2020, Vol. 30(5), article id e02092. doi: 10.1002/eap.2092.
- Fedorkov A.L., Lesosemennoe raionirovanie sosny obyknovennoi na severe Evropy (Seed zoning of Scots pine in the north of Europe), Sibirskii lesnoi zhurnal, 2020, No. 2, pp. 63—68. doi: 10.15372/SJFS20200207.
- Feehan J., Harley M., van Minnen J., Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review, Agronomy for Sustainable Development, 2009, Vol. 29(3). doi: 10.1051/agro:2008066.hal-00886523.
- Flannigan M.D., Stocks B.J., Wotton B.M., Climate change and forest fires, The Science of the Total Environment, 2000, Vol. 262, pp. 221—229.
- Fremout T., Thomas E., Bocanegra-González K.T., Aguirre-Morales C.A., Morillo-Paz A.T., Atkinson R., Kettle C., González-M R., Alcázar-Caicedo C., González M.A., Gil-Tobón C., Gutiérrez J.P., Moscoso-Higuita L.G., López-Lavalle L.A.B., de Carvalho D., Muys B., Dynamic seed zones to guide climate-smart seed sourcing for tropical dry forest restoration in Colombia, Forest Ecology and Management, 2021, Vol. 490, article id 119127. doi: 10.1016/j.foreco.2021.119127.
- Gao W.Q., Lei X.D., Fu L.Y., Impacts of climate change on the potential forest productivity based on a climate-driven biophysical model in northeastern China, Journal of Forestry Research, 2020, Vol. 31, pp. 2273—2286. doi: 10.1007/s11676-019-00999-6.
- Grady K.C., Ferrier S.M., Kolb T.E., Hart S.C., Allan G.J., Whitham T.G., Genetic variation in productivity of foundation riparian species at the edge of their distribution: implications for restoration and assisted migration in a warming climate, Global Change Biology, 2011, Vol. 17, pp. 3724—3735. doi: 10.1111/j.1365-2486.2011.02524.x.
- Guégan J.-F., de Thoisy B., Gomez-Gallego M., Jactel H., World forests, global change, and emerging pests and pathogens, Current Opinion in Environmental Sustainability, 2023, Vol. 61, article id 101266. doi: 10.1016/j.cosust.2023.101266.
- Harrison P.A., Vaillancourt R.E., Harris R.M.B., Potts B.M., Integrating climate change and habitat fragmentation to identify candidate seed sources for ecological restoration, Restoration Ecology, 2017, Vol. 25, pp. 524—531. doi: 10.1111/rec.12488.
- Howe G.T., Aitken S.N., Neale D.B., Jermstad K.D., Wheeler N.C., Chen T.H.H., From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees, Canadian Journal of Botany, 2003, Vol. 81, pp. 1247—1266. doi: 10.1139/b03-141.
- Hu X.-G., Mao J.-F., El-Kassaby Y.A., Jia K.-H., Jiao S.-Q., Zhou S.-S., Li Y., Coops N.C., Wang T., Local Adaptation and Response of Platycladus orientalis (L.) Franco Populations to Climate Change, Forests, 2019, Vol. 10(8), article id 622. doi: 10.3390/f10080622.
- Ikeda D.H., Bothwell H.M., Lau M.K., O’Neill G.A., Grady K.C., Whitham T.G., A genetics-based Universal Community Transfer Function for predicting the impacts of climate change on future communities, Functional Ecology, 2014, Vol. 28, pp. 65—74. doi: 10.1111/1365-2435.12151.
- Jordan R., Prober S.M., Hoffmann A.A., Dillon S.K., Combined Analyses of Phenotype, Genotype and Climate Implicate Local Adaptation as a Driver of Diversity in Eucalyptus microcarpa (Grey Box), Forests, 2020, Vol. 11, article id 495. doi: 10.3390/f11050495.
- Jump A.S., Peñuelas J., Running to stand still: adaptation and the response of plants to rapid climate change, Ecology Letters, 2005, Vol. 8, p. 1010—1020. doi: 10.1111/j.1461-0248.2005.00796.x.
- Kapeller S., Schuler S., Huber G., Boi G., Wohlgemuth T., Klumpp R., Provenance Trials in Alpine Range — Review and Perspectives for Applications in Climate Change, In: Management Strategies to Adapt Alpine Space Forests to Climate Change Risks, InTech, 2013. doi: 10.5772/56283.
- Karger D.N., Lange S., Hari C., Reyer C.P.O., Conrad O., Zimmermann N.E., Frieler K., CHELSA-W5E5: Daily 1km meteorological forcing data for climate impact studies, Earth System Science Data, 2023, Vol. 15(6), pp. 2445—2464. DIO: 10.5194/essd-15-2445-2023.
- Khakimova Z.G., Geograficheskie kul’tury sosny obyknovennoi v Zelenodol’skom lesnichestve Respubliki Tatarstan (Geographic culture of pine in Zelenodol’skoe Forestry in the Republic of Tatarstan), Vestnik Omskogo gosudarstvennogo agrarnogo universiteta, 2017, No. 3(27), pp. 102—107.
- Kuz’michev V.V., Zakonomernosti dinamiki drevostoev: printsipy i modeli (Regularities of dynamics of tree stands: principles and models), Novosibirsk: Nauka, 2013, 207 p.
- Kuz’min S.R., Kuz’mina N.A., Otbor perspektivnykh klimatipov sosny obyknovennoi v geograficheskikh kul’turakh raznykh lesorastitel’nykh uslovii (Choosing the promising climatypes of Scots pine in geographic cultures in different forest growth conditions), Lesovedenie, 2020, No. 5, pp. 451—465. doi: 10.31857/S0024114820050083.
- Kuz’mina N.A., Kuz’min R.S., Otsenka uspeshnosti rosta geograficheskikh kul’tur sosny obyknovennoi i rekomendatsii dlya lesnogo khozyaistva Krasnoyarskogo kraya (Evaluation of the success of the geographic cultures of Scots pine growth and recommendations for forestry of Krasnoyarsk region), Plodovodstvo, semenovodstvo, introduktsiya drevesnykh rastenii, 2018, Vol. 21, pp. 113—116.
- Lebedev A.V., Changes in the growth of Scots pine (Pinus sylvestris L.) stands in an urban environment in European Russia since 1862, Journal of Forestry Research, 2023, Vol. 34, pp. 1279—1287. doi: 10.1007/s11676-022-01569-z.
- Lebedev A.V., Dinamicheskaya model’ rosta sosnovykh drevostoev evropeiskoi chasti Rossii po dannym povtornykh nablyudenii (Dynamic model of growth of pine tree stands in the european part of Russia according to repeated observations), Sibirskii lesnoi zhurnal, 2024, No. 4, pp. 72—83. doi: 10.15372/SJFS20240407.
- Lebedev A.V., Gemonov A.V., Gradusov V.M., Gostev V.V., Saykova D.Yu., Seliverstov A.M., The influence of seed origin on stand variables of Scots pine (Pinus sylvestris L.) in European Russia according to long-term observations, IOP Conf. Series: Earth and Environmental Science, 2021, Vol. 677, article id 052116. doi: 10.1088/1755-1315/677/5/052116.
- Lebedev A.V., Kuz’michev V.V., Taksatsionnye pokazateli sosnovykh drevostoev po dannym dolgovremennykh nablyudenii (Forest survey parameters of pine tree stands according to long-term observation data), Sibirskii lesnoi zhurnal, 2023, No. 2, pp. 3—16. doi: 10.15372/SJFS20230201.
- Lempereur M., Martin-StPaul N.K., Damesin C., Joffre R., Ourcival J.-M., Rocheteau A., Rambal S., Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: implications for assessing forest productivity under climate change, New Phytologist, 2015, Vol. 207, pp. 579—590. doi: 10.1111/nph.13400.
- Lesosemennoe raionirovanie osnovnykh lesoobrazuyushchikh porod v SSSR (Forest seed zoning of the main forest-forming species in the USSR), Moscow: Lesnaya promyshlennost’, 1982, 368 p.
- Liepe K.J., van der Maaten E., van der Maaten-Theunissen M., Liesebach M., High Phenotypic Plasticity, but Low Signals of Local Adaptation to Climate in a Large-Scale Transplant Experiment of Picea abies (L.) Karst. in Europe, Frontiers in Forests and Global Change, 2022, Vol. 5, article id 804857. doi: 10.3389/ffgc.2022.804857.
- Lipka O.N., Korzukhin M.D., Zamolodchikov D.G., Dobrolyubov N. Yu., Krylenko S.V., Bogdanovich A. Yu., Semenov S.M., Rol’ lesov v adaptatsii prirodnykh sistem k izmeneniyam klimata (A role of forests in natural systems adaptation to climate change), Lesovedenie, 2021, No. 5, pp. 531—546. doi: 10.31857/S0024114821050077.
- Looney C.E., Stewart J.A., Wood K.E., Mixed-provenance plantings and climatic transfer-distance affect the early growth of knobcone-monterey hybrid pine, a fire-resilient alternative for reforestation, New Forests, 2024, Vol. 55, pp. 543—565. doi: 10.1007/s11056-023-09991-9.
- Mátyás C., Balázs P., Nagy L., Climatic Stress Test of Scots Pine Provenances in Northeastern Europe Reveals High Phenotypic Plasticity and Quasi-Linear Response to Warming, Forests, 2023, Vol. 14, article id 1950. doi: 10.3390/f14101950.
- Mátyás C., Forecasts needed for retreating forests, Nature, 2010, Vol. 464, pp. 1271. doi: 10.1038/4641271a.
- Mátyás C., Modeling climate change effects with provenance test data, Tree Physiology, 1994, Vol. 14(7—9), pp. 797—804. doi: 10.1093/treephys/14.7-8-9.797.
- Mel’nik P.G., Merzlenko M.D., Rezul’tat vyrashchivaniya klimatipov sosny v geograficheskikh kul’turakh severo-vostochnogo Podmoskov’ya (The results of Scots pine climatic provenances growth in the geographical plantations of the north-east of the Moscow region), Forestry Engineering Journal, 2014, Vol. 4, No. 4(16), pp. 36—44. doi: 10.12737/8438.
- Merzlenko M.D., Glazunov Yu.B., Mel’nik P.G., Rezul’taty vyrashchivaniya provenientsii sosny obyknovennoi v geograficheskikh posadkakh Serebryanoborskogo opytnogo lesnichestva (Growing geographic trial provenances of the Scots pine in Serebryany Bor Forestry), Lesovedenie, 2017, No. 3, pp. 176—182.
- Migunova E.S., Lesnaya tipologiya i botanika. Ekologicheskaya otsenka faktorov prirodnoi sredy (Forest typology and botanics. Environment factors assessment), Lesnoy vestnik. Forestry bulletin, 2020, Vol. 24, No. 4, pp. 65—81. doi: 10.18698/2542-1468-2020-4-65-81.
- Morgenstern K. Penner M., White spruce growth to age 44 in a provenance test at the Petawawa Research Forest, The Forestry Chronicle, 2006, Vol. 82(4), pp. 572—578. doi: 10.5558/tfc82572-4.
- Moss R.H., Edmonds J.A., Hibbard K.A., Manning M.R., Rose S.K., van Vuuren D.P., Carter T.R., Emori S., Kainuma M., Kram T. Meehl G.A., Mitchell J.F.B., Nakicenovic N., Riahi K., Smith S.J., Stouffer R.J., Thomson A.M., Weyant J.P., Wilbanks T.J., The next generation of scenarios for climate change research and assessment, Nature, 2010, Vol. 463, pp. 747—756. doi: 10.1038/nature08823.
- Nakvasina E.N., Prozherina N.A., Otsenka otklika na izmenenie klimata v opytakh s proiskhozhdeniyami Picea abies (L.) Karst. × P. obovata (Ledeb.) na severe Russkoi ravniny (Assessment of response to climate change in experiments with the origins of Picea abies (L.) Karst. × P. obovata (Ledeb.) in the north Russian plain), Russian forestry journal, 2023, No. 1, pp. 22—37. doi: 10.37482/0536-1036-2023-1-22-37.
- Naumov V.D., Povetkina N.L., Lebedev A.V., Gemonov A.V., Geograficheskie kul’tury sosny v Lesnoi opytnoi dache Timiryazevskoi akademii: k 180-letiyu M.K. Turskogo (Geographical plantations of pine in the Forest Experimental Station of the Timiryazev Academy: to the 180th anniversary of M.K. Tursky), Moscow: MESKh, 2019, 182 p.
- Nikolaeva M.A., Zhigunov A.V., Golikov A.M., 36-letnii opyt izucheniya geograficheskikh kul’tur sosny obyknovennoi v Pskovskoi oblasti (36 years of Scots pine provenance trials experiment in the Pskov region), Russian forestry journal, 2016. Vol. 5(353), pp. 22—33. doi: 10.17238/issn0536-1036.2016.5.22.
- O’Neill B.C., Carter T.R., Ebi K., Harrison P.A., Kemp-Benedict E., Kok K., Kriegler E., Preston B.L., Riahi K., Sillmann J., van Ruijven B.J., van Vuuren D., Carlisle D., Conde C., Fuglestvedt J., Green C., Hasegawa T., Leininger J., Monteith S., Pichs-Madruga R., Achievements and needs for the climate change scenario framework, Nature Climate Change, 2020, Vol. 10, pp. 1074—1084. doi: 10.1038/s41558-020-00952-0.
- O’Neill B.C., Kriegler E., Ebi K.L., Kemp-Benedict E., Riahi K., Rothman D.S., van Ruijven B.J., van Vuuren D.P., Birkmann J., Kok K., Levy M., Solecki W., The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environmental Change, 2015, Vol. 42, pp. 169—180. doi: 10.1016/j.gloenvcha.2015.01.004.
- O’Neill G.A., Gómez-Pineda E., Local was best: sourcing tree seed for future climates, Canadian Journal of Forest Research, 2021, Vol. 51(10), pp. 1432—1439. doi: 10.1139/cjfr-2020-0408.
- O’Neill G.A., Stoehr M., Jaquish B., Quantifying safe seed transfer distance and impacts of tree breeding on adaptation, Forest Ecology and Management, 2014, Vol. 328, pp. 122—130. doi: 10.1016/j.foreco.2014.05.039.
- Oke O., Wang J., Assessing effects of seed source and transfer potential of white birch populations using transfer functions, Open Journal of Ecology, 2013, Vol. 3, pp. 359—369. doi: 10.4236/oje.2013.35041.
- Pedlar J.H., McKeney D.W., Lu P., Critical seed transfer distances for selected tree species in eastern North America, Journal of Ecology, 2021, Vol. 109, pp. 2271—2283. doi: 10.1111/1365-2745.13605.
- Petrov M.I., Fedorov A.N., Vliyanie klimaticheskikh uslovii na lesnye pozhary v Tsentral’noi Yakutii (Influence of climatic conditions on forest fires in Central Yakutia), Arctic and subarctic natural resources, 2023, No. 28(2), pp. 248—260. doi: 10.31242/2618-9712-2023-28-2-248-260.
- Prober S.M., Byrne M., McLean E.H., Steane D.A., Potts B.M., Vaillancourt R.E., Stock W.D., Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration, Frontiers in Ecology and Evolution, 2015, Vol. 3, article id 65. doi: 10.3389/fevo.2015.00065.
- Prokazin E.P., Izuchenie imeyushchikhsya i sozdanie novykh geograficheskikh kul’tur (programma i metodika rabot) (Study of existing and creation of new geographical plamntations (program and methodology of work)), Pushkino: VNIILM, 1972, 52 p.
- Prozherina N.A., Nakvasina E.N., Izmenenie klimata i ego vliyanie na adaptatsiyu i vnutrividovuyu izmenchivost’ khvoinykh porod Evropeiskogo Severa Rossii (Climate change and its impact on adaptation and intraspecific variability of conifer species of the european north of Russia), Russian forestry journal, 2022, No. 2(386), pp. 9—25. doi: 10.37482/0536-1036-2022-2-9-25.
- Pshenichnikova L.S., Effektivnost’ raznogustotnogo rezhima lesovyrashchivaniya kul’tur sosny v yuzhnoi taige Srednei Sibiri (Efficiency regime of reafforestation of Pinus plantations of different densities in southern taiga of Central Siberia), Conifers of the boreal area, 2018, Vol. XXXVI, No. 6, pp. 517—523.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2019, available at: https://www.R-project.org/
- Rehfeldt G.E., Tchebakova N.M., Barnhardt L.K., Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta, Canadian Journal of Forest Research, 1999, Vol. 29(11), pp. 1660—1668. DOI: 0.1139/x99-143.
- Rehfeldt G.E., Tchebakova N.M., Milyutin L.I., Parfenova Y.I, Wykoff W.R., Kouzima N.A., Assessing population response to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models, Eurasian Journal of Forest Research, 2003, Vol. 6, pp. 83—98.
- Riahi K., van Vuuren D.P., Kriegler E., Edmonds J., O’Neill B.C., Fujimori S., Bauer N., Calvin K., Dellink R., Fricko O., Lutz W., Popp A., Cuaresma J.C., Samir K.C., Leimbach M., Jiang L., Kram T., Rao S., Emmerling J., Ebi K., Tavoni M., The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environmental Change, 2017, Vol. 42, pp. 153—168. doi: 10.1016/j.gloenvcha.2016.05.009.
- Rysin L.P., Savel’eva L.I., Sosnovye lesa Rossii (Pine forests of Russia), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2008, 288 p.
- Sandel B., Goldstein L.J., Kraft N.J., Okie J.G., Shuldman M.I., Ackerly D.D., Cleland E.E., Suding K.N., Contrasting trait responses in plant communities to experimental and geographic variation in precipitation, New Phytologist, 2010, Vol. 188(2), pp. 565—575. doi: 10.1111/j.1469-8137.2010.03382.x.
- Sang Z., Hamann A., Rweyongeza D., Adapting reforestation programs to observed and projected climate change, Mitigation and Adaptation Strategies for Global Change, 2023, Vol. 28, article id 14. doi: 10.1007/s11027-023-10050-z.
- Sannikov S.N., Petrova I.V., Sannikova N.S., Afonin A.N., Chernodubov A.I., Egorov E.V., Genetiko-klimatologo-geograficheskie printsipy semennogo raionirovaniya sosnovykh lesov Rossii (Genetic-climatologic-geographical principles of seed zoning of pine forests in Russia), Sibirskii lesnoi zhurnal, 2017, No. 2, pp. 19—30. doi: 10.15372/SJFS20170203.
- Savolainen O., Bokma F., Garcı́a-Gil R., Komulainen P., Repob T., Genetic Variation in Cessation of Growth and Frost Hardiness and Consequences for Adaptation of Pinus sylvestris to Climatic Changes, Forest Ecology and Management, 2004, Vol. 197(1—3), pp. 79—89. doi: 10.1016/j.foreco.2004.05.006.
- Shishkina A.A., Karpun N.N., Sostoyanie i gribnye bolezni geograficheskikh kul’tur sosny obyknovennoi Orekhovo-Zuevskogo lesnichestva Moskovskoi oblasti (Condition and Fungal Diseases of Scots Pine Provenance Trials of the Orekhovo-Zuevsky Forestry District, Moscow Oblast), Sibirskii lesnoi zhurnal, 2024, No. 5, pp. 112—122. doi: 10.15372/SJFS20240512.
- Shishkina A.A., Kolganikhina G.B., Fitopatologicheskaya otsenka uspeshnosti geograficheskikh kul’tur sosny obyknovennoi v Serebryanoborskom opytnom lesnichestve (Phytopathological success assessment of Scots pine provenances in Serebryanoborskoe Experimental Forestry), Proceedings of the Saint Petersburg Forestry Research Institute, 2016, No. 3, pp. 22—38.
- Shkol’nik I.M., Meleshko V.P., Kattsov V.M., Vozmozhnye izmeneniya klimata na evropeiskoi chasti Rossii i sopredel’nykh territoriyakh k kontsu XXI veka: raschet s regional’noi model’yu GGO (Possible climate changes in European Russia and neighboring countries by the late 21st century: calculation with the MGO regional model), Meteorologiya i gidrologiya, 2006, No. 3, pp. 5—16.
- Shryock D.F., DeFalco L.A., Esque T.C., Spatial decision-support tools to guide restoration and seed-sourcing in the Desert Southwest, Ecosphere, 2018, Vol. 9, article id e02453. doi: 10.1002/ecs2.2453.
- Shutyaev A.M., Giertych M., Genetic Subdivisions of the Range of Scots Pine (Pinus sylvestris L.) Based on a Transcontinental Provenance Experiment, Silvae Genetica, 2000, Vol. 49, pp. 137—151.
- Shutyaev A.M., Giertych M., Height growth variation in a comprehensive Euroasian provenance experiment of Pinus sylvestris L., Silvae Genetica, 1997, Vol. 46, pp. 332—349.
- Shvidenko A.Z., Shchepashchenko D.G., Klimaticheskie izmeneniya i lesnye pozhary v Rossii (Climate change and wildfires in Russia), Lesovedenie, 2013, No. 5. pp. 50—61.
- Solomnikov A.A., Shiryaev V.A., Issledovanie rosta geograficheskikh kul’tur sosny v Bryanskoi oblasti (Study of the growth of geographical plantations of pine in the Bryansk region), Aktual’nye problemy lesnogo kompleksa, 2005, No. 12, pp. 55—58.
- Spathelf P., van der Maaten E., van der Maaten-Theunissen M., Campioli M., Dobrowolska D., Climate change impacts in European forests: the expert views of local observers, Annals of Forest Science, 2014, Vol. 71, pp. 131—137. doi: 10.1007/s13595-013-0280-1.
- Sturrock R.N., Frankel S.J., Brown A.V., Hennon P.E., Kliejunas J.T., Lewis K.J., Worrall J.J., Woods A.J., Climate change and forest diseases, Plant Pathalogy, 2011, Vol. 60(1), pp. 133—149. doi: 10.1111/j.1365-3059.2010.02406.x
- Toledo-Aceves T., Sáenz-Romero C., Cruzado-Vargas A.L., Vásquez-Reyes V., Quercus insignis seedling response to climatic transfer distance in the face of climate change, Forest Ecology and Management, 2023, Vol. 533, article id 120855. doi: 10.1016/j.foreco.2023.120855.
- Ukrainetz N.K., O’Neill G.A., Jaquish B., Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: a case study for interior spruce in British Columbia, Canadian Journal of Forest Research, 2011, Vol. 41(7), pp. 1452—1464. doi: 10.1139/x11-060.
- van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G.C., Kram T., Krey V., Lamarque J.-F., Masui T., Meinshausen M., Nakicenovic N., Smith S.J., Rose S.K., The representative concentration pathways: an overview, Climatic Change, 2011, Vol. 109, article number 5. doi: 10.1007/s10584-011-0148-z.
- Vorob’ev D.V., Tipy lesov evropeiskoi chasti SSSR (Types of forests in the European part of the USSR), Kiev: Izd-vo AN USSR, 1953, 452 p.
- Wang J., Wang X., Ji Y., Gao J., Climate factors determine the utilization strategy of forest plant resources at large scales, Frontiers in Plant Science, 2022, Vol. 13, article id 990441. doi: 10.3389/fpls.2022.990441.
- Wang T., O’Neill G.A., Aitken S.N., Integrating environmental and genetic effects to predict responses of tree populations to climate, Ecological Applications, 2010, Vol. 20, pp. 153—163. doi: 10.1890/08-2257.1.
- Yang J., Pedlar J.H., McKenney D.W., Weersink A., The development of universal response functions to facilitate climate-smart regeneration of black spruce and white pine in Ontario, Canada, Forest Ecology and Management, 2015, Vol. 339, pp. 34—43. doi: 10.1016/j.foreco.2014.12.001.
- Ying C.C., Yanchuk A.D., The development of British Columbia’s tree seed transfer guidelines: Purpose, concept, methodology, and implementation, Forest Ecology and Management, 2006, Vol. 227(102), pp. 1—13. doi: 10.1016/j.foreco.2006.02.028.
Supplementary files
