GROWTH, STRUCTURE, AND PHASE BEHAVIOR OF DI-TERT-BUTYL-PARA-TERPHENYL CRYSTALS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studying the growth of para-terphenyl derivative (4,4"-di-tert-butyl-para-terphenyl (tBu-3P-tBu)) crystals are presented. The solubility of this compound in toluene at 20°С has been established by spectrophotometry. Using the techniques of growth from solutions and physical vapor transport,tBu-3P-tBu single crystals up to 1 cm long have been obtained for the first time. Their structure at 85 K has been interpreted in the triclinic system, sp. gr. P1 (Z = 8), using single-crystal X-ray diffraction. Flat rectangular crystals with the best morphological characteristics have been grown from vapor. The developed face of these crystals exhibits elementary growth steps 1.4 nm high, corresponding to molecular monolayers oriented in the (001) plane. The presence of a polymorphic transition at 229.2°C and mesomorphic liquid crystal phase above the melting temperature (255.6°С) is found.

作者简介

V. Postnikov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

N. Sorokina

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

A. Kulishov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

G. Yurasik

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Center of Photochemistry, Federal Scientific Research Centre“Crystallography and Photonics,”Russian Academy of Sciences, Moscow, Russia

Email: postva@yandex.ru
Россия, Москва; Россия, Москва

M. Lyasnikova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

T. Sorokin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

M. Skorotetsky

Enikopolov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia

Email: postva@yandex.ru
Россия, Москва

O. Borshchev

Enikopolov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia

编辑信件的主要联系方式.
Email: postva@yandex.ru
Россия, Москва

参考

  1. Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p. https://doi.org/10.1016/C2013-0-01791-4
  2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. 2-е изд. М.: Химия, 1984. 336 с.
  3. Matei C., Hambsch F.J., Oberstedt S. // Nucl. Instrum. Methods Phys. Res. A. 2012. V. 676. P. 135. https://doi.org/10.1016/j.nima.2011.11.076
  4. Liao H.R., Lin Y.J., Chou Y.M. et al. // J. Lumin. 2008. V. 128. P. 1373. https://doi.org/10.1016/j.jlumin.2008.01.006
  5. Gershuni S., Rabinovitz M., Agranat I. et al. // J. Phys. Chem. 1980. V. 84. P. 517. https://doi.org/10.1021/j100442a013
  6. Yemam H.A., Mahl A., Tinkham J.S. et al. // Chem. Eur. J. 2017. V. 23. P. 8921. https://doi.org/10.1002/chem.201700877
  7. Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 801. https://doi.org/10.1134/s0023476118050247
  8. Pålsson L.O., Nehls B.S., Galbrecht F. et al. // J. Phys. Chem. B. 2010. V. 114. P. 12765. https://doi.org/10.1021/jp1028883
  9. Корешков А.П. Основы аналитической химии. Т. 3. М.: Химия, 1970. 472 с.
  10. Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Кристаллография. 2021. Т. 66. С. 494. https://doi.org/10.31857/s0023476121030206
  11. Postnikov V.A., Sorokina N.I., Lyasnikova M.S. et al. // Crystals. 2020. V. 10. P. 363. https://doi.org/10.3390/cryst10050363
  12. Nagahara L.A. // J. Vac. Sci. Technol. B. 1994. V. 12. P. 1694. https://doi.org/10.1116/1.587265
  13. Nečas D., Klapetek P. Gwiddion Software: 2.59.
  14. Rigaku Oxford Diffraction: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
  15. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. S. 345. https://doi.org/10.1515/zkri-2014-1737
  16. Palatinus L. // Acta Cryst. A. 2004. V. 60. P 604. https://doi.org/10.1107/S0108767304022433
  17. Ried W., Freitag D. // Angew. Chem. 1968. V. 80. P. 932. https://doi.org/10.1002/ange.19680802203
  18. Ландсберг Г.С. Оптика. 7-е изд. М.: ФИЗМАТЛИТ, 2017. 852 с.
  19. Postnikov V.A., Odarchenko Y.I., Iovlev A. V. et al. // Cryst. Growth Des. 2014. V. 14. P. 1726. https://doi.org/10.1021/cg401876a
  20. MercurySoftware: 2021.1.0. CCDC.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (6KB)
3.

下载 (31KB)
4.

下载 (4MB)
5.

下载 (1MB)
6.

下载 (46KB)
7.

下载 (3MB)
8.

下载 (53KB)
9.

下载 (947KB)
10.

下载 (27KB)
11.

下载 (982KB)

版权所有 © Russian Academy of Sciences, 2023