GROWTH, STRUCTURE, AND PHASE BEHAVIOR OF DI-TERT-BUTYL-PARA-TERPHENYL CRYSTALS
- 作者: Postnikov V.A.1, Sorokina N.I.1, Kulishov A.A.1, Yurasik G.A.1,2, Lyasnikova M.S.1, Sorokin T.A.1, Skorotetsky M.S.3, Borshchev O.V.3
-
隶属关系:
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
- Center of Photochemistry, Federal Scientific Research Centre“Crystallography and Photonics,”Russian Academy of Sciences, Moscow, Russia
- Enikopolov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia
- 期: 卷 68, 编号 1 (2023)
- 页面: 121-130
- 栏目: CRYSTAL GROWTH
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673567
- DOI: https://doi.org/10.31857/S0023476123010228
- EDN: https://elibrary.ru/DQQVUI
- ID: 673567
如何引用文章
详细
The results of studying the growth of para-terphenyl derivative (4,4"-di-tert-butyl-para-terphenyl (tBu-3P-tBu)) crystals are presented. The solubility of this compound in toluene at 20°С has been established by spectrophotometry. Using the techniques of growth from solutions and physical vapor transport,tBu-3P-tBu single crystals up to 1 cm long have been obtained for the first time. Their structure at 85 K has been interpreted in the triclinic system, sp. gr. P1 (Z = 8), using single-crystal X-ray diffraction. Flat rectangular crystals with the best morphological characteristics have been grown from vapor. The developed face of these crystals exhibits elementary growth steps 1.4 nm high, corresponding to molecular monolayers oriented in the (001) plane. The presence of a polymorphic transition at 229.2°C and mesomorphic liquid crystal phase above the melting temperature (255.6°С) is found.
作者简介
V. Postnikov
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: postva@yandex.ru
Россия, Москва
N. Sorokina
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: postva@yandex.ru
Россия, Москва
A. Kulishov
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: postva@yandex.ru
Россия, Москва
G. Yurasik
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Center of Photochemistry, Federal Scientific Research Centre“Crystallography and Photonics,”Russian Academy of Sciences, Moscow, Russia
Email: postva@yandex.ru
Россия, Москва; Россия, Москва
M. Lyasnikova
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: postva@yandex.ru
Россия, Москва
T. Sorokin
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: postva@yandex.ru
Россия, Москва
M. Skorotetsky
Enikopolov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia
Email: postva@yandex.ru
Россия, Москва
O. Borshchev
Enikopolov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia
编辑信件的主要联系方式.
Email: postva@yandex.ru
Россия, Москва
参考
- Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p. https://doi.org/10.1016/C2013-0-01791-4
- Красовицкий Б.М., Болотин Б.М. Органические люминофоры. 2-е изд. М.: Химия, 1984. 336 с.
- Matei C., Hambsch F.J., Oberstedt S. // Nucl. Instrum. Methods Phys. Res. A. 2012. V. 676. P. 135. https://doi.org/10.1016/j.nima.2011.11.076
- Liao H.R., Lin Y.J., Chou Y.M. et al. // J. Lumin. 2008. V. 128. P. 1373. https://doi.org/10.1016/j.jlumin.2008.01.006
- Gershuni S., Rabinovitz M., Agranat I. et al. // J. Phys. Chem. 1980. V. 84. P. 517. https://doi.org/10.1021/j100442a013
- Yemam H.A., Mahl A., Tinkham J.S. et al. // Chem. Eur. J. 2017. V. 23. P. 8921. https://doi.org/10.1002/chem.201700877
- Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 801. https://doi.org/10.1134/s0023476118050247
- Pålsson L.O., Nehls B.S., Galbrecht F. et al. // J. Phys. Chem. B. 2010. V. 114. P. 12765. https://doi.org/10.1021/jp1028883
- Корешков А.П. Основы аналитической химии. Т. 3. М.: Химия, 1970. 472 с.
- Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Кристаллография. 2021. Т. 66. С. 494. https://doi.org/10.31857/s0023476121030206
- Postnikov V.A., Sorokina N.I., Lyasnikova M.S. et al. // Crystals. 2020. V. 10. P. 363. https://doi.org/10.3390/cryst10050363
- Nagahara L.A. // J. Vac. Sci. Technol. B. 1994. V. 12. P. 1694. https://doi.org/10.1116/1.587265
- Nečas D., Klapetek P. Gwiddion Software: 2.59.
- Rigaku Oxford Diffraction: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
- Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. S. 345. https://doi.org/10.1515/zkri-2014-1737
- Palatinus L. // Acta Cryst. A. 2004. V. 60. P 604. https://doi.org/10.1107/S0108767304022433
- Ried W., Freitag D. // Angew. Chem. 1968. V. 80. P. 932. https://doi.org/10.1002/ange.19680802203
- Ландсберг Г.С. Оптика. 7-е изд. М.: ФИЗМАТЛИТ, 2017. 852 с.
- Postnikov V.A., Odarchenko Y.I., Iovlev A. V. et al. // Cryst. Growth Des. 2014. V. 14. P. 1726. https://doi.org/10.1021/cg401876a
- MercurySoftware: 2021.1.0. CCDC.
补充文件
