Молекулярная динамика и малоугловое рентгеновское рассеяние: сопоставление вычислительного и экспериментального подходов к изучению структуры биологических комплексов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сопоставляются результаты изучения ДНК-белковых комплексов двумя независимыми структурными методами – молекулярной динамики (МД) и малоуглового рентгеновского рассеяния (МУРР). МД – это вычислительный метод, позволяющий визуализировать поведение макромолекул в условиях реальной среды, который базируется на законах физики, но страдает от многочисленных упрощений. МУРР – это рентгеновский метод, позволяющий восстановить трехмерную структуру объекта в растворе по одномерному профилю малоуглового рассеяния, при применении которого встает проблема неоднозначности решения обратных задач. Использование структурных характеристик комплексов, полученных методом МУРР, для валидации структурных 3D-моделей, полученных в МД-эксперименте, позволило значительно снизить амбивалентность теоретических предсказаний и показать эффективность сочетания методов МД и МУРР для решения задач структурной биологии.

Полный текст

Доступ закрыт

Об авторах

М. В. Петухов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН; Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Автор, ответственный за переписку.
Email: pmxmvl@yandex.ru
Россия, Москва; Москва; Москва

Т. В. Ракитина

Национальный исследовательский центр “Курчатовский институт”; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН

Email: pmxmvl@yandex.ru
Россия, Москва; Москва

Ю. К. Агапова

Национальный исследовательский центр “Курчатовский институт”

Email: pmxmvl@yandex.ru
Россия, Москва

Д. Е. Петренко

Национальный исследовательский центр “Курчатовский институт”

Email: pmxmvl@yandex.ru
Россия, Москва

Д. Д. Подшивалов

Национальный исследовательский центр “Курчатовский институт”; Московский государственный университет им. М.В. Ломоносова

Email: pmxmvl@yandex.ru
Россия, Москва; Москва

В. И. Тимофеев

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: pmxmvl@yandex.ru
Россия, Москва

Г. С. Петерс

Национальный исследовательский центр “Курчатовский институт”

Email: pmxmvl@yandex.ru
Россия, Москва

Ю. А. Гапонов

Национальный исследовательский центр “Курчатовский институт”

Email: pmxmvl@yandex.ru
Россия, Москва

Э. В. Бочаров

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН

Email: pmxmvl@yandex.ru
Россия, Москва

Э. В. Штыкова

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”; Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: pmxmvl@yandex.ru
Россия, Москва; Москва

Список литературы

  1. Feigin L.A., Svergun D.I. Structure analysis by small-angle x-ray and neutron scattering. New York: Plenum Press, 1987. 335 p.
  2. Svergun D.I., Koch M.H., Timmins P.A. et al. Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules. London: Oxford University Press, 2013. 358 p.
  3. Petrenko D.E., Timofeev V.I., Britikov V.V. et al. // Biology (Basel). 2021. V. 10. № 10. P. 1021. https://doi.org/10.3390/biology10101021
  4. Bengtsen T., Holm V.L., Kjolbye L.R. et al. // Elife. 2020. V. 9. P. e56518. https://doi.org/10.7554/eLife.56518
  5. Gaponov Y.A., Timofeev V.I., Agapova Y.K. et al. // Mendeleev Commun. 2022. V. 32. № 6. P. 742. https://doi.org/10.1016/j.mencom.2022.11.011
  6. Shtykova E.V., Petoukhov M.V., Mozhaev A.A. et al. // J. Biol. Chem. 2019. V. 294. № 47. https://doi.org/10.1074/jbc.RA119.010390
  7. Kamyshinsky R., Chesnokov Y., Dadinova L. et al. // Biomolecules. 2020. V. 10. № 1. https://doi.org/Artn 3910.3390/Biom10010039
  8. Larsen A.H., Wang Y., Bottaro S. et al. // PLoS Comput. Biol. 2020. V. 16. № 4. P. e1007870. https://doi.org/10.1371/journal.pcbi.1007870
  9. Timofeev V.I., Gaponov Y.A., Petrenko D.E. et al. // Crystals. 2023. V. 13. P. 1642. https://doi.org/10.3390/cryst13121642
  10. He W., Henning-Knechtel A., Kirmizialtin S. // Front. Bioinform. 2022. V. 2. P. 781949. https://doi.org/10.3389/fbinf.2022.781949
  11. Bhowmick T., Ghosh S., Dixit K. et al. // Nat. Commun. 2014. V. 5. P. 4124. https://doi.org/10.1038/ncomms5124
  12. Agapova Y.K., Altukhov D.A., Timofeev V.I. et al. // Sci. Rep. 2020. V. 10. № 1. P. 15128. https://doi.org/10.1038/s41598-020-72113-4
  13. Altukhov D.A., Talyzina A.A., Agapova Y.K. et al. // J. Biomol. Struct. Dyn. 2016. V. 36. № 1. P. 45. https://doi.org/10.1080/07391102.2016.1264893
  14. Timofeev V.I., Altukhov D.A., Talyzina A.A. et al. // J. Biomol. Struct. Dyn. 2018. V. 36. № 16. P. 4392. https://doi.org/10.1080/07391102.2017.1417162
  15. Emsley P., Lohkamp B., Scott W.G. et al. // Acta Cryst. D. 2010. V. 66. Pt 4. P. 486. https://doi.org/10.1107/S0907444910007493
  16. Mouw K.W., Rice P.A. // Mol. Microbiol. 2007. V. 63. № 5. P. 1319. https://doi.org/10.1111/j.1365-2958.2007.05586.x
  17. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1–2. P. 19. https://doi.org/10.1016/j.softx.2015.06.001
  18. Voevodin V., Antonov A., Nikitenko D. et al. // Supercomputing Frontiers and Innovations. 2019. V. 6. № 2. P. 4. https://doi.org/10.14529/jsfi190201
  19. Lindorff-Larsen K., Piana S., Palmo K. et al. // Proteins. 2010. V. 78. № 8. P. 1950. https://doi.org/10.1002/prot.22711
  20. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://doi.org/10.1063/1.448118
  21. Parrinello M., Rahman A. // J. Chem. Phys. 1982. V. 76. № 5. P. 2662. https://doi.org/10.1063/1.443248
  22. Hess B., Bekker H., Berendsen H.J.C. et al. // J. Comput. Chem. 1997. V. 18. № 12. P. 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  23. Roe D.R., Cheatham T.E. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 3084. https://doi.org/10.1021/ct400341p
  24. Peters G.S., Zakharchenko O.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 945. P. 162616.
  25. Peters G.S., Gaponov Y.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2022. V. 1025. P. 166170.
  26. Hammersley A.P. // J. Appl. Cryst. 2016. V. 49. № 2. P. 646.
  27. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
  28. Guinier A., Fournet G. Small Angle Scattering of X-Rays. New York: Wiley, 1955. 268 p.
  29. Porod G. // Small-angle X-ray scattering / Ed Glatter O., Kratky O. London: Academic Press, 1982. P. 17.
  30. Petoukhov M.V., Franke D., Shkumatov A.V. et al. // J. Appl. Cryst. 2012. V. 45. № 2. P. 342. https://doi.org/10.1107/S0021889812007662
  31. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  32. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
  33. Svergun D.I., Nierhaus K.H. // J. Biol. Chem. 2000. V. 275. № 19. P. 14432.
  34. Svergun D.I., Barberato C., Koch M.H.J. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024