Молекулярная динамика и малоугловое рентгеновское рассеяние: сопоставление вычислительного и экспериментального подходов к изучению структуры биологических комплексов
- Авторы: Петухов М.В.1,2,3, Ракитина Т.В.4,2, Агапова Ю.К.4, Петренко Д.Е.4, Подшивалов Д.Д.4,5, Тимофеев В.И.1, Петерс Г.С.4, Гапонов Ю.А.4, Бочаров Э.В.2, Штыкова Э.В.1,3
-
Учреждения:
- Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”
- Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Национальный исследовательский центр “Курчатовский институт”
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 69, № 5 (2024)
- Страницы: 802-810
- Раздел: СТРУКТУРА МАКРОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673712
- DOI: https://doi.org/10.31857/S0023476124050069
- EDN: https://elibrary.ru/ZDJRFY
- ID: 673712
Цитировать
Аннотация
Сопоставляются результаты изучения ДНК-белковых комплексов двумя независимыми структурными методами – молекулярной динамики (МД) и малоуглового рентгеновского рассеяния (МУРР). МД – это вычислительный метод, позволяющий визуализировать поведение макромолекул в условиях реальной среды, который базируется на законах физики, но страдает от многочисленных упрощений. МУРР – это рентгеновский метод, позволяющий восстановить трехмерную структуру объекта в растворе по одномерному профилю малоуглового рассеяния, при применении которого встает проблема неоднозначности решения обратных задач. Использование структурных характеристик комплексов, полученных методом МУРР, для валидации структурных 3D-моделей, полученных в МД-эксперименте, позволило значительно снизить амбивалентность теоретических предсказаний и показать эффективность сочетания методов МД и МУРР для решения задач структурной биологии.
Полный текст

Об авторах
М. В. Петухов
Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН; Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Автор, ответственный за переписку.
Email: pmxmvl@yandex.ru
Россия, Москва; Москва; Москва
Т. В. Ракитина
Национальный исследовательский центр “Курчатовский институт”; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: pmxmvl@yandex.ru
Россия, Москва; Москва
Ю. К. Агапова
Национальный исследовательский центр “Курчатовский институт”
Email: pmxmvl@yandex.ru
Россия, Москва
Д. Е. Петренко
Национальный исследовательский центр “Курчатовский институт”
Email: pmxmvl@yandex.ru
Россия, Москва
Д. Д. Подшивалов
Национальный исследовательский центр “Курчатовский институт”; Московский государственный университет им. М.В. Ломоносова
Email: pmxmvl@yandex.ru
Россия, Москва; Москва
В. И. Тимофеев
Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”
Email: pmxmvl@yandex.ru
Россия, Москва
Г. С. Петерс
Национальный исследовательский центр “Курчатовский институт”
Email: pmxmvl@yandex.ru
Россия, Москва
Ю. А. Гапонов
Национальный исследовательский центр “Курчатовский институт”
Email: pmxmvl@yandex.ru
Россия, Москва
Э. В. Бочаров
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: pmxmvl@yandex.ru
Россия, Москва
Э. В. Штыкова
Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”; Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: pmxmvl@yandex.ru
Россия, Москва; Москва
Список литературы
- Feigin L.A., Svergun D.I. Structure analysis by small-angle x-ray and neutron scattering. New York: Plenum Press, 1987. 335 p.
- Svergun D.I., Koch M.H., Timmins P.A. et al. Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules. London: Oxford University Press, 2013. 358 p.
- Petrenko D.E., Timofeev V.I., Britikov V.V. et al. // Biology (Basel). 2021. V. 10. № 10. P. 1021. https://doi.org/10.3390/biology10101021
- Bengtsen T., Holm V.L., Kjolbye L.R. et al. // Elife. 2020. V. 9. P. e56518. https://doi.org/10.7554/eLife.56518
- Gaponov Y.A., Timofeev V.I., Agapova Y.K. et al. // Mendeleev Commun. 2022. V. 32. № 6. P. 742. https://doi.org/10.1016/j.mencom.2022.11.011
- Shtykova E.V., Petoukhov M.V., Mozhaev A.A. et al. // J. Biol. Chem. 2019. V. 294. № 47. https://doi.org/10.1074/jbc.RA119.010390
- Kamyshinsky R., Chesnokov Y., Dadinova L. et al. // Biomolecules. 2020. V. 10. № 1. https://doi.org/Artn 3910.3390/Biom10010039
- Larsen A.H., Wang Y., Bottaro S. et al. // PLoS Comput. Biol. 2020. V. 16. № 4. P. e1007870. https://doi.org/10.1371/journal.pcbi.1007870
- Timofeev V.I., Gaponov Y.A., Petrenko D.E. et al. // Crystals. 2023. V. 13. P. 1642. https://doi.org/10.3390/cryst13121642
- He W., Henning-Knechtel A., Kirmizialtin S. // Front. Bioinform. 2022. V. 2. P. 781949. https://doi.org/10.3389/fbinf.2022.781949
- Bhowmick T., Ghosh S., Dixit K. et al. // Nat. Commun. 2014. V. 5. P. 4124. https://doi.org/10.1038/ncomms5124
- Agapova Y.K., Altukhov D.A., Timofeev V.I. et al. // Sci. Rep. 2020. V. 10. № 1. P. 15128. https://doi.org/10.1038/s41598-020-72113-4
- Altukhov D.A., Talyzina A.A., Agapova Y.K. et al. // J. Biomol. Struct. Dyn. 2016. V. 36. № 1. P. 45. https://doi.org/10.1080/07391102.2016.1264893
- Timofeev V.I., Altukhov D.A., Talyzina A.A. et al. // J. Biomol. Struct. Dyn. 2018. V. 36. № 16. P. 4392. https://doi.org/10.1080/07391102.2017.1417162
- Emsley P., Lohkamp B., Scott W.G. et al. // Acta Cryst. D. 2010. V. 66. Pt 4. P. 486. https://doi.org/10.1107/S0907444910007493
- Mouw K.W., Rice P.A. // Mol. Microbiol. 2007. V. 63. № 5. P. 1319. https://doi.org/10.1111/j.1365-2958.2007.05586.x
- Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1–2. P. 19. https://doi.org/10.1016/j.softx.2015.06.001
- Voevodin V., Antonov A., Nikitenko D. et al. // Supercomputing Frontiers and Innovations. 2019. V. 6. № 2. P. 4. https://doi.org/10.14529/jsfi190201
- Lindorff-Larsen K., Piana S., Palmo K. et al. // Proteins. 2010. V. 78. № 8. P. 1950. https://doi.org/10.1002/prot.22711
- Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://doi.org/10.1063/1.448118
- Parrinello M., Rahman A. // J. Chem. Phys. 1982. V. 76. № 5. P. 2662. https://doi.org/10.1063/1.443248
- Hess B., Bekker H., Berendsen H.J.C. et al. // J. Comput. Chem. 1997. V. 18. № 12. P. 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
- Roe D.R., Cheatham T.E. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 3084. https://doi.org/10.1021/ct400341p
- Peters G.S., Zakharchenko O.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 945. P. 162616.
- Peters G.S., Gaponov Y.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2022. V. 1025. P. 166170.
- Hammersley A.P. // J. Appl. Cryst. 2016. V. 49. № 2. P. 646.
- Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
- Guinier A., Fournet G. Small Angle Scattering of X-Rays. New York: Wiley, 1955. 268 p.
- Porod G. // Small-angle X-ray scattering / Ed Glatter O., Kratky O. London: Academic Press, 1982. P. 17.
- Petoukhov M.V., Franke D., Shkumatov A.V. et al. // J. Appl. Cryst. 2012. V. 45. № 2. P. 342. https://doi.org/10.1107/S0021889812007662
- Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
- Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
- Svergun D.I., Nierhaus K.H. // J. Biol. Chem. 2000. V. 275. № 19. P. 14432.
- Svergun D.I., Barberato C., Koch M.H.J. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
Дополнительные файлы
