Ab initio-форма супрамолекулярных комплексов кукурбит [8]урила в растворе по данным малоуглового рентгеновского рассеяния

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведенные ранее исследования пространственной структуры комплексов гость–хозяин макроциклических кавитандов кукурбитурилов с рядом нитроксильных радикалов методами электронного парамагнитного резонанса (ЭПР), ЯМР и кристаллографии показали, что в водных растворах с использованием в качестве молекул-гостей ряда нитроксильных радикалов могут возникать упорядоченные агрегаты в форме равностороннего треугольника из трех монокомплексов гость–хозяин в его вершинах. Получены экспериментальные результаты по малоугловому рентгеновскому рассеянию водных растворов комплексов гость–хозяин кукурбит[8]урила со стабильным нитроксильным радикалом – протонированным темпоамином и проведено ab initio-моделирование на их основе формы агрегатов комплексов, находящихся в естественном состоянии в растворе. При поиске моделей формы агрегатов либо не использовали никакой дополнительной информации об их структуре, либо вводили наличие оси третьего порядка. ЭПР применен в качестве независимого метода исследования агрегации комплексов в растворе. Показано, что форма частиц комплексов при больших концентрациях кавитанда и гостя в водном растворе близка по своим параметрам к равностороннему треугольнику, что согласуется с известными кристаллографическими данными и ЭПР.

Об авторах

В. В. Волков

Институт кристаллографии им. А.В. Шубникова, ФНИЦ “Кристаллография и фотоника” РАН; Национальный исследовательский центр “Курчатовский институт”

Email: vvo@crys.ras.ru
Россия, Москва; Россия, Москва

В. А. Лившиц

Центр фотохимии РАН ФНИЦ “Кристаллография и фотоника” РАН; МФТИ “Московский физико-технический институт”

Email: vvo@crys.ras.ru
Россия, Москва; Россия, Долгопрудный

Б. Б. Мешков

Центр фотохимии РАН ФНИЦ “Кристаллография и фотоника” РАН

Email: vvo@crys.ras.ru
Россия, Москва

В. Е. Асадчиков

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Автор, ответственный за переписку.
Email: asad@crys.ras.ru
Россия, Москва

Список литературы

  1. Lee J.W., Samal S., Selvapalam N. et al. // Acc. Chem. Res. 2003. V. 36. № 8. P. 621. https://doi.org/10.1021/ar020254k
  2. Kim J., Jung In-Sun, Kim Soo-Young et al. // J. Am. Chem. Soc. 2000. V. 122. № 3. P. 540. https://doi.org/10.1021/ja993376p
  3. Gerasko O.A., Samsonenko D.G., Fedin V.P. // Russian Chemical Reviews. 2002. V. 71. № 9. P. 741. https://doi.org/10.1070/RC2002v071n09ABEH000748
  4. Huang Z., Ke Qin, Geng Deng et al. // Langmuir. 2016. V. 32. P. 12352. https://doi.org/10.1021/acs.langmuir.6b01709
  5. Liu S., Ruspic C., Mukhopadhyay P. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 15959. https://doi.org/10.1021/ja055013x
  6. Kim K., Selvapalam N., Young Ho Ko et al. // Chem. Soc. Rev. 2007. V. 36. P. 267. https://doi.org/10.1039/b603088m
  7. Gonzalez C.A.M. Cucurbiturils as Molecular Containers: The Mechanism of Complexation of Small Guests, the Effects of the Inclusion on their Photophysical Properties, and Potential Applications. PhD Thesis. Bremen: International University Bremen, 2003. 161 p. https://d-nb.info/1035266601/34
  8. Hang Conga H., Qian-Jiang Zhua, Sai-Feng Xuea et al. // Chin. Sci. Bull. 2010. V. 55. P. 3633. https://doi.org/10.1007/s11434-010-4146-8
  9. Lagona J., Mukhopadhyay O., Chakrabarti S., Isaacs L. // Angew. Chem. Int. Ed. 2005. V. 44. P. 4844. https://doi.org/10.1002/anie.200460675
  10. Walker S., Oun R., McInnes F.J., Wheate N.J. // Isr. J. Chem. 2011. V. 5–6. P. 616. https://doi.org/10.1002/ijch.201100033
  11. Assaf K.I., Florea M., Antony J. et al. // J. Phys. Chem. B. 2017. V. 121. № 49. P. 11144. https://doi.org/10.1021/acs.jpcb.7b09175
  12. Dang D.T. // Front Chem. 2022. V. https://doi.org/10. 829312. https://doi.org/10.3389/fchem.2022.829312
  13. Di Costanzo L., Geremia S. // Molecules. 2020. V. 25. 3555. https://doi.org/10.3389/10.3390/molecules25153555
  14. Dang D.T., Bosmans R.P.G., Moitzi C. et al. // Org. Biomol. Chem. 2014. V. 12. P. 9341. https://doi.org/10.1039/c4ob01729c
  15. De Oliveira O.V., da Silva Gonçalves A., de Almeida N.E.C. // J. Biomol. Struct. Dyn. 2021. https://doi.org/10.1080/07391102.2021.1932600
  16. Zhang S. Synthesis of Mono–Functionalized Cucurbit[n]urils and Exploration of their Applications. PhD thesis. Jacobs Univ., Department of Life Sciences and Chemistry. 2019. 124 p. https://d-nb.info/1190888130/34
  17. Day A., Arnold A.P., Blanch R.J., Snushall B. // J. Org. Chem. 2001. V. 66. P. 8094. https://doi.org/10.1021/jo015897c
  18. Wheate N.J., Kumar P.G.A., Torres A.M. et al. // J. Phys. Chem. B. 2008. V. 112. P. 2311. https://doi.org/10.1021/jp709847p
  19. Biedermann F., Vendruscolo M., Scherman O.A. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 14879. https://doi.org/10.1021/ja407951x
  20. Bardelang D., Udachin K.A., Leek D.M. et al. // Cryst. Growth Des. 2011. V. 11. P. 5598. https://doi.org/10.1021/cg201173j
  21. Bardelang D., Banaszak K., Karoui H. et al. // J. Am. Chem. Soc. 2009. V. 13. P. 5402. https://doi.org/10.1021
  22. Mileo E., Mezzina E., Grepioni F. et al. // Chem. Eur. J. 2009. V. 15. P. 7859. https://doi.org/10.1002/chem.200802647
  23. Jayaraj N., Porel M., Ottaviani M.F. et al. // Langmuir. 2009. V. 25. P. 13820. https://doi.org/10.1021/la9020806
  24. Ouari O., Bardelang D. // Isr. J. Chem. 2018. V. 58. https://doi.org/10.1002/ijch.201700115
  25. Лившиц В.А., Мешков Б.Б., Габидинова Р.Ф. и др.// Химия высоких энергий. 2018. Т. 52. С. 140. https://doi.org/10.7868/S0023119718020096
  26. Могилевский Л.Ю., Дембо А.Т., Свергун Д.И., Фейгин Л.А. // Кристаллография. 1984. Т. 29. Вып. 3. С. 587.
  27. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  28. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum Press, 1987. 321 p.
  29. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
  30. Волков В.В. // Кристаллография. 2021. Т. 66. № 5. С. 796. https://doi.org/10.31857/S0023476121050234
  31. Svergun D.I. // Biophys. J. 1999. V. 76. P. 2879.
  32. Svergun D. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
  33. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779

Дополнительные файлы


© Российская академия наук, 2023