Dissolution Energies of Impurities and Their Clusters in Powellite CaMoO4

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The impurity defects in CaMoO4 are simulated by the method of interatomic potentials. The dissolution energies of monovalent, divalent, and trivalent impurities are calculated, their comparative analysis is performed, and the main patterns of change are presented. The most probable localization of defects is determined. In the case of heterovalent impurities, the most energetically favorable mechanism for their charge compensation has been found, both due to intrinsic crystal defects and under conjugate isomorphism. It is shown that the formation of impurity clusters with intrinsic crystal defects and (to a greater extent) the formation of clusters of different-valence impurities may significantly reduce the dissolution energy of impurities. The formation of neutral clusters of univalent impurities with oxygen vacancies not only makes it possible to increase the solubility of impurities but also reduces the probability of the formation of color centers.

Sobre autores

V. Dudnikova

Moscow State University, 119991, Moscow

Email: VDudnikova@hotmail.com
Россия, Москва

N. Eremin

Moscow State University, 119991, Moscow

Autor responsável pela correspondência
Email: VDudnikova@hotmail.com
Россия, Москва

Bibliografia

  1. Hu Y., Zhuang W., Ye H. et al. // J. Alloys Compd. 2005. V. 390. P. 226.
  2. Dixit P., Chauhan V., Kumar P., Pandey P.C. // J. Luminescence. 2020. V. 223. P. 117240.
  3. Zhuang R.Z., Zhang L.Z., Lin Z.B., Wang G.F. // Mat. Res. Innovations 2008. V. 12. P. 62.
  4. Шилова Г.В., Сироткин А.А., Зверев П.Г. // Квантовая электроника. 2019. Т. 49. С. 570.
  5. Mikhailik V.B., Henry S., Kraus H., Solskii I. // Nucl. Instrum. Method Phys. Res. A. 2007. V. 583. P. 350.
  6. Lee S.J., Choi J.H., Danevich F.A. et al. // Astropart. Phys. 2011. V. 34. P 732.
  7. Bosbach D., Rabung T., Brandt F., Fanghanel T. // Radiochim. Acta. 2004. V. 92. P. 639.
  8. Taurines T., Boizot B. // J. Am. Ceram. Soc. 2012. V. 95. P. 1105.
  9. Lin Q., Feng X. // J. Phys.: Condens. Matter. 2003. V. 15. P. 1963.
  10. Chen T., Liu T., Zhang Q. et al. // Nucl. Instrum. Method Phys. Res. A. 2007. V. 575. P. 390.
  11. Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. Т. 64. С. 1452.
  12. Gale J.D. // Z. Kristallographie. 2005. B. 220. S. 552.
  13. Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1938. V. 34. P. 485.
  14. Александров В.Б., Горбатый Л.В., Илюхин В.В. // Кристаллография. 1968. Т. 13. С. 512.
  15. Bush T.S., Gale J.D., Catlow C.R.A., Battle P.J. // Mater. Chem. 1994. V. 4. P. 831.
  16. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (324KB)
3.

Baixar (63KB)
4.

Baixar (68KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023