Calculation of the Phonon Spectrum of PbMnBO4 Crystal Using Density Functional Theory

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The phonon dispersion and Raman spectrum of the PbMnBO4 ferromagnetic crystal have been calculated within the density functional theory. Imaginary phonon branches have been observed at the points Y, Z, and Г and along the X–S direction of the Brillouin zone, which indicates structural instability and a possible phase transition with variation in external factors (temperature and pressure). The shapes of vibrations and symmetry types of the normal modes of the crystal at the center of the Brillouin zone have been determined. The calculation results are compared with the experimental and theoretical spectra from other studies. It is shown that the vibrational mode of highest intensity at 692.5 cm–1 in the spectrum and the mode at 272.3 cm–1, corresponding to the experimental modes at 690.5 and 224.7 cm–1, are bending vibrations of oxygen atoms in distorted MnO6 octahedra.

Sobre autores

S. Krylova

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia

Autor responsável pela correspondência
Email: slanky@iph.krasn.ru
Россия, Красноярск

Bibliografia

  1. Park H., Barbier J. // Acta Cryst. E. 2001. V. 57. P. i82. https://doi.org/10.1107/S1600536801013940
  2. Park H., Barbier J., Hammond R.P. // Solid State Sci. 2003. V. 5. № 4. P. 565. https://doi.org/10.1016/S1293-2558(03)00056-6
  3. Park H., Lam R., Greedan J.E., Barbier J. // Chem. Mater. 2003. V. 15. P. 1703. https://doi.org/10.1021/cm0217452
  4. Gao W., Jing Y., Yang J. et al. // Inorg Chem. 2014. V. 53. P. 2364. https://doi.org/10.1021/ic403175w
  5. Song K., Yue M., Gao W. et al. // J. Alloys Compd. 2016. V. 684. P. 346. https://doi.org/10.1016/j.jallcom.2016.05.194
  6. Yang J., Sun X. // Int. J. Hydrogen En. 2022. V. 47. № 61. P. 25608.https://doi.org/10.1016/j.ijhydene.2022.05.305
  7. Koo H.-J., Whangbo M.-H. // Solid State Commun. 2009. V. 149. № 15–16. P. 602. https://doi.org/10.1016/j.ssc.2009.01.030
  8. Pankrats A., Sablina K., Velikanov D. et al. // J. Magn. Magn. Mater. 2014. V. 353. P. 23. https://doi.org/10.1016/j.jmmm.2013.10.018
  9. Murshed M.M., Mendive C.B., Curti M. et al. // Mater. Res. Bull. 2014. V. 9. P. 170. https://doi.org/10.1016/j.materresbull.2014.07.005
  10. Prosnikov M.A., Smirnov A.N., Davydov V.Yu. et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 025808. https://doi.org/10.1088/0953-8984/29/2/025808
  11. Curti M., Murshed M.M., Bredow T. et al. // J. Mater. Sci. 2019. V. 54. P. 13579. https://doi.org/10.1007/s10853-019-03866-1
  12. Prosnikov M.A. // Phys. Rev. B. 2021. V. 103. P. 094443. https://doi.org/10.1103/PhysRevB.103.094443
  13. Pankrats A.I., Sablina K.A., Velikanov D.A. et al. // Solid State Phenomena. 2014. V. 215. P. 372. 10.4028/www.scientific.net/SSP.215.372
  14. Pankrats A., Sablina K., Eremin M. et al. // J. Magn. Magn. Mater. 2016. V. 414. P. 82. https://doi.org/10.1016/j.jmmm.2016.04.042
  15. Pankrats A., Kolkov M., Martynov S. et al. // J. Magn. Magn. Mater. 2019. V. 471. P. 416. https://doi.org/10.1016/j.jmmm.2018.09.098
  16. Prosnikov M.A., Bal M.E., Kolkov M.I. et al. // Phys. Rev. Res. 2022. V. 4. P. 013004. https://doi.org/10.1103/PhysRevResearch.4.013004
  17. Martynov S.N. // Phys. Solid State. 2021. V. 63. P. 1253. https://doi.org/10.1134/S1063783421080199
  18. Gesing Th.M., Mendive C.B., Curti M. et al. // Z. Kristallogr. 2013. V. 228. № 10. P. 532. https://doi.org/10.1524/zkri.2013.1640
  19. Clark S.J., Segall M.D., Pickard C.J. et al. // Z. Kristallogr. 2005. V. 220. P. 567. https://doi.org/10.1524/zkri.220.5.567.65075
  20. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133. https://doi.org/10.1103/PhysRev.140.A1133
  21. Hohenberg P.C., Kohn W., Sham L.J. // Adv. Quantum Chem. 1990. V. 21. P. 7. https://doi.org/10.1016/S0065-3276(08)60589-4
  22. Pfrommer B.G., Côté M., Louie S.G., Cohen M.L. // J. Comp. Physiol. 1997. V. 131. P. 233. https://doi.org/10.1006/jcph.1996.5612
  23. Monkhorst H.J., Pack J.D // Phys. Rev. B. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  24. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  25. Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Phys. Rev. Lett. 2008. V. 100. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  26. Hanson R.M. Enhancing Learning with Online Resources, Social Networking, and Digital Libraries, Chap. Web-Based Molecular Visualization for Chemistry Education in the 21st Century // ACS Symposium Series. 2010. P. 65. https://doi.org/10.1021/bk-2010-1060.ch004
  27. Moberly J.G., Bernards M.T., Waynant K.V. // J. Cheminform. 2018. V. 10. P. 5. https://doi.org/10.1186/s13321-018-0259-x
  28. Rousseau D.L., Bauman R.P., Porto S.P.S. // J. Raman Spectrosc. 1981. V. 10. P. 253. https://doi.org/10.1002/jrs.1250100152
  29. Dovesi R., Orlando R., Civalleri B. et al. // Z. Kristallogr. 2005. V. 220. P. 571.
  30. Dovesi R., Saunders V.R., Roetti C. et al. CRYSTAL09 User’s Manual: University of Torino, 2009.
  31. Bredow T., Gerson A.R. // Phys. Rev. B. 2000. V. 61. P. 5194. https://doi.org/10.1103/PhysRevB.61.5194

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (134KB)
4.

Baixar (271KB)
5.

Baixar (668KB)
6.

Baixar (98KB)
7.

Baixar (1018KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023