Мезоскопическое несоответствие – новый взгляд на эпитаксию наноструктур

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Напряжения и деформации, возникающие из-за мезоскопического несоответствия на границах раздела, могут оказывать разнообразное влияние на свойства поверхностей и осажденных на них наноструктур. Представлен краткий обзор причин возникновения и последствий мезоскопического несоответствия на металлических поверхностях и показано, как оно влияет на рост, структуру и морфологию тонких пленок и наноструктур на ранних стадиях эпитаксии.

Texto integral

Acesso é fechado

Sobre autores

Д. Бажанов

Московский государственный университет им. М.В. Ломоносова

Autor responsável pela correspondência
Email: dima@kintech.ru
Rússia, г. Москва

Bibliografia

  1. Brovko O.O., Bazhanov D.I., Meyerheim H.L. et al. // Surf. Sci. Rep. 2014. V. 69. P. 159. https://doi.org/10.1016/j.surfrep.2014.08.001
  2. Gibbs J.W. 3rd ed. The Collected Works J. Willard Gibbs. Thermody-namics. V. 1. New Haven: Yale University Press, 1957.
  3. Royer L. // Bull. Soc. Franç. Minér. Cris. 1928. V. 51. P. 7.
  4. Herring C. // Structure and Properties of Solid Surfaces / Eds. Gomer R., Smith C.S. Chicago: University of Chicago Press, 1953. 76 p.
  5. Shuttleworth R. // Proc. Phys. Soc. A. 1950. V. 63 (5). P. 444.
  6. Lennard-Jones J.E., Dent B.M. // Proc. R. Soc. Lond. 1928. V. 121 (787). P. 247.
  7. Pauling L. // J. Am. Chem. Soc. 1931. V. 53 (4). P. 1367.
  8. Müller B., Nedelmann L., Fischer B. et al. // Phys. Rev. Lett. 1998. V. 80 (12). P. 2642. https://doi.org/10.1103/PhysRevLett.80.2642
  9. Sander D., Skomski R., Schmidthals C. et al. // Phys. Rev. Lett. 1996. V. 77 (12). P. 2566. https://doi.org/10.1103/PhysRevLett.77.2566
  10. Fassbender J., May U., Schirmer B. et al. // Phys. Rev. Lett. 1995. V. 75 (24). P. 4476. https://doi.org/10.1103/PhysRevLett.75.4476
  11. Kern R., Müller P. // Surf. Sci. 1997. V. 392 (1–3). P. 103.
  12. Levanov N., Stepanyuk V., Hergert W. et al. // Phys. Rev. B. 2000. V. 61 (3). P. 2230. https://doi.org/10.1103/PhysRevB.61.2230
  13. Stepanyuk V.S., Bazhanov D.I., Baranov A.N. et al. // Phys. Rev. B. 2000. V. 62 (23). P. 15398. https://doi.org/10.1103/PhysRevB.62.15398
  14. Stepanyuk V., Bazhanov D., Hergert W. et al. // Phys. Rev. B. 2001. V. 63 (15). P. 153406. https://doi.org/10.1103/PhysRevB.63.153406
  15. Gölzhäuser A., Ehrlich G. // Phys. Rev. Lett. 1996. V. 77 (7). P. 1334. https://doi.org/10.1103/PhysRevLett.77.1334
  16. Brovko O.O., Negulyaev N.N., Stepanyuk V.S. // Phys. Rev. B. 2010. V. 82 (15). P. 155452. https://doi.org/10.1103/PhysRevB.82.155452
  17. Feng W., Meyerheim H.L., Mohseni K. et al. // Phys. Rev. Lett. 2013. V. 110 (23). P. 235503. https://doi.org/10.1103/PhysRevLett.110.235503
  18. Meyerheim H.L., Crozier E., Gordon R. et al. // Phys. Rev. B. 2012. V. 85 (12). P. 125405. https://doi.org/10.1103/PhysRevB.85.125405
  19. Sander D., Phark S.-H., Corbetta M. et al. // J. Phys.: Condens. Matter. 2014. V. 26. P. 394008. https://doi.org/10.1088/0953-8984/26/39/394008

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Sketch of the system (square island of Co36 on the surface of Cu(001)) and three-dimensional representation of relaxations (a). Vertical displacement of cobalt atoms in the island (b) and copper atoms (c) in the upper layer of the substrate along the direction <110>. The distance between the layers is d0 = 1.8075 A, the lattice constant of copper is 0 = 3.615 Å. Hydrostatic stress in the same island and substrate layer (d) [12]. The drawing is adapted from [1].

Baixar (45KB)
3. Fig. 2. Evolution of the average mesoscopic mismatch m = (rb – r0)/r0 for square islands of cobalt (a) and copper (b) as a function of the size of the island N (the number of atoms growing from right to left); rb and r0 are the average bond lengths in the island and the volume of the copper crystal, respectively [13]. The drawing is adapted from [1].

Baixar (36KB)
4. Fig. 3. Display of the positions occupied by Pt atoms on a Pt(111) cluster of ~145 atoms. The shaded marks are the positions of the atoms after diffusion, the unpainted ones are the atoms after deposition at ~20 K. When displayed, only one atom is on the cluster at any given time. The “bare” zone separating the central region from the edge of the cluster can be populated by atoms during deposition. The diagram in the lower right part demonstrates the adsorption potential on the island surface and the temperature at which certain transport processes are involved [14]. The drawing is adapted from [1].

Baixar (23KB)
5. Fig. 4. Cu(111) surface with cobalt deposited in 0.4 monolayers at 290 K: experimental STM map (a) and the result of KMC modeling without deformation relaxations (b) and with their correct consideration (c). The figure is adapted from [1].

Baixar (26KB)
6. Fig. 5. STM image in DC mode (8.0 = 3.6 nm2, offset voltage 0.2 V, I = 100 pA) of two Fe islands (∅⊘ ≈ 20 and 35 Å) [15]. The inset shows a visible height profile along the line. The drawing is adapted from [1].

Baixar (41KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024