Microstructure of gold nanoparticles obtained from a solution of hydrochloroauric acid by picosecond laser irradiation
- Autores: Vasiliev A.L.1, Ivanova A.G.1, Bondarenko V.I.1, Golovin A.L.1, Kononenko V.V.2, Ashikkalieva K.K.2, Zavedeev E.V.2, Konov V.I.2
-
Afiliações:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
- Edição: Volume 69, Nº 2 (2024)
- Páginas: 243-251
- Seção: REAL STRUCTURE OF CRYSTALS
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673204
- DOI: https://doi.org/10.31857/S0023476124020078
- EDN: https://elibrary.ru/YTHIDH
- ID: 673204
Citar
Resumo
The morphology and crystal structure of Au nanoparticles obtained by irradiating an aqueous solution of Hydrochloroauric acid (HAuCl4) with laser pulses were investigated using transmission electron microscopy, electron diffraction, and electron tomography methods. Along with round and shapeless particles characterized by a cubic structure with twins, there are flat particles with trigonal morphology. Such particles have a layered microstructure, with an alternation of face-centered cubic and close-packed hexagonal crystal structure of layers parallel to the base planes of the prism.
Texto integral

Sobre autores
A. Vasiliev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Autor responsável pela correspondência
Email: a.vasiliev56@gmail.com
Rússia, Moscow
A. Ivanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: a.vasiliev56@gmail.com
Rússia, Moscow
V. Bondarenko
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: a.vasiliev56@gmail.com
Rússia, Moscow
A. Golovin
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: a.vasiliev56@gmail.com
Rússia, Moscow
V. Kononenko
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
Email: a.vasiliev56@gmail.com
Rússia, Moscow
K. Ashikkalieva
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
Email: a.vasiliev56@gmail.com
Rússia, Moscow
E. Zavedeev
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
Email: a.vasiliev56@gmail.com
Rússia, Moscow
V. Konov
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
Email: a.vasiliev56@gmail.com
Rússia, Moscow
Bibliografia
- Amendola V., Amans D., Ishikawa Y. et al. // Chemistry. 2020. V. 26. № 42. P. 9206. https://doi.org/10.1002/chem.202000686
- Rakov I.I., Pridvorova S.M., Shafeev G.A. // Laser Phys. Lett. 2019. V. 17. № 1. 016004. https://doi.org/10.1088/1612-202X/ab5c21
- Smirnov V.V., Zhilnikova M.I., Barmina E.V. et al. // Chem. Phys. Lett. 2021. V. 763. 138211. https://doi.org/10.1016/j.cplett.2020.138211
- Pavlov I.S., Barmina E.V., Zhilnikova M.I. et al. // Nanobiotechnology Reports. 2022. V. 17. № 3. P. 290. https://doi.org/10.1134/S2635167622030132
- John M.G., Meader V.K., Tibbetts K.M. // Photochemistry and Photophysics – Fundamentals to Applications / Ed. Saha S. IntechOpen, 2018. P. 137. https://doi.org/10.5772/intechopen.75075
- Okamoto T., Nakamura T., Sakota K., Yatsuhashi T. // Langmuir. 2019. V. 35. № 37. P. 12123. https://doi.org/10.1021/acs.langmuir.9b01854
- Ashikkalieva K.K., Kononenko V.V., Vasil’ev A.L. et al. // Phys. Wave Phen. 2022. V. 30. P. 17. https://doi.org/10.3103/S1541308X22010046
- Rodrigues C.J., Bobb J.A., John M.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 45. P. 28465. https://doi.org/10.1039/C8CP05774E
- Nakamura T., Herbani Y., Ursescu D. et al. // AIP Adv. 2013 V. 3. № 8. P. 082101. https://doi.org/10.1063/1.4817827
- Nakamura T., Mochidzuki Y., Sato S. // J. Mater. Res. 2008. V. 23. № 4. P. 968. https://doi.org/10.1557/jmr.2008.0115
- Barbosa H.F.P., Neumanna M.G., Cavalheiro C.C.S. // J. Braz. Chem. Soc. 2019. V. 30. № 4. P. 813. https://doi.org/10.21577/0103-5053.20180213
- Tibbetts K.M., Tangeysh B., Odhner J.H., Levis R.J. // J. Phys. Chem. A. 2016 V. 120. № 20. P. 3562. https://doi.org/10.1021/acs.jpca.6b03163
- Kumar V., Ganesan S. // Int. J. Green Nanotechnol. 2011. V. 3. № 1. P. 47. https://doi.org/10.1080/19430892.2011.574538
- Muttaqin, Nakamura T., Sato S. // Appl. Phys. A. 2015. V. 120. P. 881. https://doi.org/10.1007/s00339-015-9314-x
- Nakashima N., Yamanaka K., Saeki M. et al. // J. Photochem. Photobiol. A. 2016. V. 319–320. P. 70. https://doi.org/10.1016/j.jphotochem.2015.12.021
- Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
- Das M., Shim K.H., An S.S.A., Yi D.K. // Toxicol. Environ. Health Sci. 2011. V. 3. № 4. P. 193. https://doi.org/10.1007/s13530-011-0109-y
- Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. М.: Наука, 2008. 319 с.
- Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34.
- Nurmukhametov D.R., Zvekov A.A., Zverev A.S. et al. // Quantum Electron. 2017. V. 47. № 7. P. 647. https://doi.org/10.1070/QEL16329
- Krainov A.D., Agrba P.D., Sergeeva E.A. et al. // Quantum Electron. 2014. V. 44. № 8. P. 757. https://doi.org/10.1070/QE2014v044n08ABEH015494
- Simakin A.V., Voronov V.V., Shafeev G.A. // Phys. Wave Phen. 2007. V. 15. № 4. P. 218. https://doi.org/10.3103/S1541308X07040024
- Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
- Ashikkalieva K.K., Kononenko V.V., Arutyunyan N.R. et al. // Phys. Wave Phenom. 2023. V. 31. № 1. P. 44. https://doi.org/10.3103/S1541308X23010016
- Pashley D.W., Stowell M.J. // Philos. Mag. 1963. V. 8. P. 1605.
- Davey J.E., Deiter R.H. // J. Appl. Phys. 1965. V. 36. P. 284.
- Davey W.P. // Phys. Rev. 1925. V. 25. P. 753.
- Kirkland A.I., Edwards P.P., Jefferson D.A., Duff D.G. // Annu. Rep. Prog. Chem. C. 1990. V. 87. P. 247. https://doi.org/10.1039/PC9908700247
- Kirkland A.I., Jefferson D.A., Duff D.G. et al. // Proc. R. Soc. Lond. A. 1993. V. 440. P. 589.
- Germain V., Li J., Ingert D. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8717.
- Morriss R.H., Bottoms W.R., Peacock R.G. // J. Appl. Phys. 1968. V. 39. P. 3016.
- Cherns D. // Philos. Mag. 1974. V. 30. P. 549.
- Castaño V., Gómez A., José Yacamán M. // Surface Sci. Lett. 1984. V. 146. № 2. P. L587. https://doi.org/10.1016/0167-2584(84)90756-4
- Reyes-Gasga J., Gómez-Rodríguez A., Gao X., Yacamán M.J. // Ultramicroscopy. 2008. V. 108. P. 929. https://doi.org/10.1016/j.ultramic.2008.03.005
- Mendoza-Ramirez M.C., Silva-Pereyra H.-G., Avalos-Borja M. // Mater. Characterization. 2020. V. 164. P. 110313.
- Midgley P.A., Eggeman A.S. // IUCrJ. 2015. V. 2. P. 126. https://doi.org/10.1107/S2052252514022283
- Palatinus L., Brázda P., Jelínek M. et al. // Acta Cryst. B. 2019. V. 75. № 4. P. 512. https://doi.org/10.1107/S2052520619007534
- Liu J., Niu Wenxin., Liu G. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4387.
- Park G.-S., Min K.S., Kwon H. et al. // Adv. Mater. 2021. Article 2100653. P. 1.
- Huang X., Li H., Li S. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 12245.
- Jany B., Gauquelin N., Willhammar T. et al. // Sci. Rep. 2017. V. 7. P. 42420. https://doi.org/10.10/srep42420
Arquivos suplementares
