Microstructure of gold nanoparticles obtained from a solution of hydrochloroauric acid by picosecond laser irradiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The morphology and crystal structure of Au nanoparticles obtained by irradiating an aqueous solution of Hydrochloroauric acid (HAuCl4) with laser pulses were investigated using transmission electron microscopy, electron diffraction, and electron tomography methods. Along with round and shapeless particles characterized by a cubic structure with twins, there are flat particles with trigonal morphology. Such particles have a layered microstructure, with an alternation of face-centered cubic and close-packed hexagonal crystal structure of layers parallel to the base planes of the prism.

Texto integral

Acesso é fechado

Sobre autores

A. Vasiliev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: a.vasiliev56@gmail.com
Rússia, Moscow

A. Ivanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Rússia, Moscow

V. Bondarenko

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Rússia, Moscow

A. Golovin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Rússia, Moscow

V. Kononenko

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Rússia, Moscow

K. Ashikkalieva

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Rússia, Moscow

E. Zavedeev

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Rússia, Moscow

V. Konov

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Rússia, Moscow

Bibliografia

  1. Amendola V., Amans D., Ishikawa Y. et al. // Chemistry. 2020. V. 26. № 42. P. 9206. https://doi.org/10.1002/chem.202000686
  2. Rakov I.I., Pridvorova S.M., Shafeev G.A. // Laser Phys. Lett. 2019. V. 17. № 1. 016004. https://doi.org/10.1088/1612-202X/ab5c21
  3. Smirnov V.V., Zhilnikova M.I., Barmina E.V. et al. // Chem. Phys. Lett. 2021. V. 763. 138211. https://doi.org/10.1016/j.cplett.2020.138211
  4. Pavlov I.S., Barmina E.V., Zhilnikova M.I. et al. // Nanobiotechnology Reports. 2022. V. 17. № 3. P. 290. https://doi.org/10.1134/S2635167622030132
  5. John M.G., Meader V.K., Tibbetts K.M. // Photochemistry and Photophysics – Fundamentals to Applications / Ed. Saha S. IntechOpen, 2018. P. 137. https://doi.org/10.5772/intechopen.75075
  6. Okamoto T., Nakamura T., Sakota K., Yatsuhashi T. // Langmuir. 2019. V. 35. № 37. P. 12123. https://doi.org/10.1021/acs.langmuir.9b01854
  7. Ashikkalieva K.K., Kononenko V.V., Vasil’ev A.L. et al. // Phys. Wave Phen. 2022. V. 30. P. 17. https://doi.org/10.3103/S1541308X22010046
  8. Rodrigues C.J., Bobb J.A., John M.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 45. P. 28465. https://doi.org/10.1039/C8CP05774E
  9. Nakamura T., Herbani Y., Ursescu D. et al. // AIP Adv. 2013 V. 3. № 8. P. 082101. https://doi.org/10.1063/1.4817827
  10. Nakamura T., Mochidzuki Y., Sato S. // J. Mater. Res. 2008. V. 23. № 4. P. 968. https://doi.org/10.1557/jmr.2008.0115
  11. Barbosa H.F.P., Neumanna M.G., Cavalheiro C.C.S. // J. Braz. Chem. Soc. 2019. V. 30. № 4. P. 813. https://doi.org/10.21577/0103-5053.20180213
  12. Tibbetts K.M., Tangeysh B., Odhner J.H., Levis R.J. // J. Phys. Chem. A. 2016 V. 120. № 20. P. 3562. https://doi.org/10.1021/acs.jpca.6b03163
  13. Kumar V., Ganesan S. // Int. J. Green Nanotechnol. 2011. V. 3. № 1. P. 47. https://doi.org/10.1080/19430892.2011.574538
  14. Muttaqin, Nakamura T., Sato S. // Appl. Phys. A. 2015. V. 120. P. 881. https://doi.org/10.1007/s00339-015-9314-x
  15. Nakashima N., Yamanaka K., Saeki M. et al. // J. Photochem. Photobiol. A. 2016. V. 319–320. P. 70. https://doi.org/10.1016/j.jphotochem.2015.12.021
  16. Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
  17. Das M., Shim K.H., An S.S.A., Yi D.K. // Toxicol. Environ. Health Sci. 2011. V. 3. № 4. P. 193. https://doi.org/10.1007/s13530-011-0109-y
  18. Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. М.: Наука, 2008. 319 с.
  19. Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34.
  20. Nurmukhametov D.R., Zvekov A.A., Zverev A.S. et al. // Quantum Electron. 2017. V. 47. № 7. P. 647. https://doi.org/10.1070/QEL16329
  21. Krainov A.D., Agrba P.D., Sergeeva E.A. et al. // Quantum Electron. 2014. V. 44. № 8. P. 757. https://doi.org/10.1070/QE2014v044n08ABEH015494
  22. Simakin A.V., Voronov V.V., Shafeev G.A. // Phys. Wave Phen. 2007. V. 15. № 4. P. 218. https://doi.org/10.3103/S1541308X07040024
  23. Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
  24. Ashikkalieva K.K., Kononenko V.V., Arutyunyan N.R. et al. // Phys. Wave Phenom. 2023. V. 31. № 1. P. 44. https://doi.org/10.3103/S1541308X23010016
  25. Pashley D.W., Stowell M.J. // Philos. Mag. 1963. V. 8. P. 1605.
  26. Davey J.E., Deiter R.H. // J. Appl. Phys. 1965. V. 36. P. 284.
  27. Davey W.P. // Phys. Rev. 1925. V. 25. P. 753.
  28. Kirkland A.I., Edwards P.P., Jefferson D.A., Duff D.G. // Annu. Rep. Prog. Chem. C. 1990. V. 87. P. 247. https://doi.org/10.1039/PC9908700247
  29. Kirkland A.I., Jefferson D.A., Duff D.G. et al. // Proc. R. Soc. Lond. A. 1993. V. 440. P. 589.
  30. Germain V., Li J., Ingert D. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8717.
  31. Morriss R.H., Bottoms W.R., Peacock R.G. // J. Appl. Phys. 1968. V. 39. P. 3016.
  32. Cherns D. // Philos. Mag. 1974. V. 30. P. 549.
  33. Castaño V., Gómez A., José Yacamán M. // Surface Sci. Lett. 1984. V. 146. № 2. P. L587. https://doi.org/10.1016/0167-2584(84)90756-4
  34. Reyes-Gasga J., Gómez-Rodríguez A., Gao X., Yacamán M.J. // Ultramicroscopy. 2008. V. 108. P. 929. https://doi.org/10.1016/j.ultramic.2008.03.005
  35. Mendoza-Ramirez M.C., Silva-Pereyra H.-G., Avalos-Borja M. // Mater. Characterization. 2020. V. 164. P. 110313.
  36. Midgley P.A., Eggeman A.S. // IUCrJ. 2015. V. 2. P. 126. https://doi.org/10.1107/S2052252514022283
  37. Palatinus L., Brázda P., Jelínek M. et al. // Acta Cryst. B. 2019. V. 75. № 4. P. 512. https://doi.org/10.1107/S2052520619007534
  38. Liu J., Niu Wenxin., Liu G. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4387.
  39. Park G.-S., Min K.S., Kwon H. et al. // Adv. Mater. 2021. Article 2100653. P. 1.
  40. Huang X., Li H., Li S. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 12245.
  41. Jany B., Gauquelin N., Willhammar T. et al. // Sci. Rep. 2017. V. 7. P. 42420. https://doi.org/10.10/srep42420

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Light-field image of gold nanoparticles on a carbon grid (a), VFPEM image of one of the rounded nanoparticles (b), arrows show twinning boundaries, a square indicates the region from which a two-dimensional Fourier spectrum was obtained (inset). The spectrum corresponds to the electronogram from HCC-Au in the [111] projection of the crystal lattice

Baixar (442KB)
3. Fig. 2. VRPEM images of hexagonal (a) and triangular (b) particles. Typical electronogram obtained from such particles (c) and two-dimensional Fourier spectrum (d)

Baixar (748KB)
4. Fig. 3. HRPEM image of the nanoparticle (a), enlarged image of the crystal lattice (b), corresponding two-dimensional Fourier spectrum (c), calculated electronogram corresponding to 4H HCC-Au (d)

Baixar (448KB)
5. Fig. 4. VFPEM image of the nanoparticle after tilting by 52º relative to the position shown in Fig. 3a, (a); enlarged image of the crystal lattice of region 1 after filtration (b); two-dimensional Fourier spectrum from region 1 (c); enlarged image of the crystal lattice of region 2 after filtration (d); two-dimensional Fourier spectrum from region 2 (e)

Baixar (152KB)
6. Fig. 5. HRPEM image of a gold nanoparticle presumably with trigonal morphology (a); enlarged image of the crystal lattice of the region highlighted by a square (b); two-dimensional Fourier spectrum from this region (c)

Baixar (219KB)
7. Fig. 6. Visualization of the distribution of clustered peaks in the a*b* (a) and b*c* (b, c) backspace projections: a, b - all peaks, c - peaks indexed in the hexagonal cell a = 2.8843(8), c = 7.083(3) Å

Baixar (180KB)
8. Fig. 7. Diffractogram from powder - dried sol with gold nanoparticles. Curve - experimental data, vertical lines - reflections corresponding to HCC-Au (PDF-2 03-065-2870)

Baixar (110KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024