Microstructure of gold nanoparticles obtained from a solution of hydrochloroauric acid by picosecond laser irradiation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The morphology and crystal structure of Au nanoparticles obtained by irradiating an aqueous solution of Hydrochloroauric acid (HAuCl4) with laser pulses were investigated using transmission electron microscopy, electron diffraction, and electron tomography methods. Along with round and shapeless particles characterized by a cubic structure with twins, there are flat particles with trigonal morphology. Such particles have a layered microstructure, with an alternation of face-centered cubic and close-packed hexagonal crystal structure of layers parallel to the base planes of the prism.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Vasiliev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: a.vasiliev56@gmail.com
Ресей, Moscow

A. Ivanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Ресей, Moscow

V. Bondarenko

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Ресей, Moscow

A. Golovin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Ресей, Moscow

V. Kononenko

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Ресей, Moscow

K. Ashikkalieva

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Ресей, Moscow

E. Zavedeev

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Ресей, Moscow

V. Konov

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Amendola V., Amans D., Ishikawa Y. et al. // Chemistry. 2020. V. 26. № 42. P. 9206. https://doi.org/10.1002/chem.202000686
  2. Rakov I.I., Pridvorova S.M., Shafeev G.A. // Laser Phys. Lett. 2019. V. 17. № 1. 016004. https://doi.org/10.1088/1612-202X/ab5c21
  3. Smirnov V.V., Zhilnikova M.I., Barmina E.V. et al. // Chem. Phys. Lett. 2021. V. 763. 138211. https://doi.org/10.1016/j.cplett.2020.138211
  4. Pavlov I.S., Barmina E.V., Zhilnikova M.I. et al. // Nanobiotechnology Reports. 2022. V. 17. № 3. P. 290. https://doi.org/10.1134/S2635167622030132
  5. John M.G., Meader V.K., Tibbetts K.M. // Photochemistry and Photophysics – Fundamentals to Applications / Ed. Saha S. IntechOpen, 2018. P. 137. https://doi.org/10.5772/intechopen.75075
  6. Okamoto T., Nakamura T., Sakota K., Yatsuhashi T. // Langmuir. 2019. V. 35. № 37. P. 12123. https://doi.org/10.1021/acs.langmuir.9b01854
  7. Ashikkalieva K.K., Kononenko V.V., Vasil’ev A.L. et al. // Phys. Wave Phen. 2022. V. 30. P. 17. https://doi.org/10.3103/S1541308X22010046
  8. Rodrigues C.J., Bobb J.A., John M.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 45. P. 28465. https://doi.org/10.1039/C8CP05774E
  9. Nakamura T., Herbani Y., Ursescu D. et al. // AIP Adv. 2013 V. 3. № 8. P. 082101. https://doi.org/10.1063/1.4817827
  10. Nakamura T., Mochidzuki Y., Sato S. // J. Mater. Res. 2008. V. 23. № 4. P. 968. https://doi.org/10.1557/jmr.2008.0115
  11. Barbosa H.F.P., Neumanna M.G., Cavalheiro C.C.S. // J. Braz. Chem. Soc. 2019. V. 30. № 4. P. 813. https://doi.org/10.21577/0103-5053.20180213
  12. Tibbetts K.M., Tangeysh B., Odhner J.H., Levis R.J. // J. Phys. Chem. A. 2016 V. 120. № 20. P. 3562. https://doi.org/10.1021/acs.jpca.6b03163
  13. Kumar V., Ganesan S. // Int. J. Green Nanotechnol. 2011. V. 3. № 1. P. 47. https://doi.org/10.1080/19430892.2011.574538
  14. Muttaqin, Nakamura T., Sato S. // Appl. Phys. A. 2015. V. 120. P. 881. https://doi.org/10.1007/s00339-015-9314-x
  15. Nakashima N., Yamanaka K., Saeki M. et al. // J. Photochem. Photobiol. A. 2016. V. 319–320. P. 70. https://doi.org/10.1016/j.jphotochem.2015.12.021
  16. Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
  17. Das M., Shim K.H., An S.S.A., Yi D.K. // Toxicol. Environ. Health Sci. 2011. V. 3. № 4. P. 193. https://doi.org/10.1007/s13530-011-0109-y
  18. Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. М.: Наука, 2008. 319 с.
  19. Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34.
  20. Nurmukhametov D.R., Zvekov A.A., Zverev A.S. et al. // Quantum Electron. 2017. V. 47. № 7. P. 647. https://doi.org/10.1070/QEL16329
  21. Krainov A.D., Agrba P.D., Sergeeva E.A. et al. // Quantum Electron. 2014. V. 44. № 8. P. 757. https://doi.org/10.1070/QE2014v044n08ABEH015494
  22. Simakin A.V., Voronov V.V., Shafeev G.A. // Phys. Wave Phen. 2007. V. 15. № 4. P. 218. https://doi.org/10.3103/S1541308X07040024
  23. Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
  24. Ashikkalieva K.K., Kononenko V.V., Arutyunyan N.R. et al. // Phys. Wave Phenom. 2023. V. 31. № 1. P. 44. https://doi.org/10.3103/S1541308X23010016
  25. Pashley D.W., Stowell M.J. // Philos. Mag. 1963. V. 8. P. 1605.
  26. Davey J.E., Deiter R.H. // J. Appl. Phys. 1965. V. 36. P. 284.
  27. Davey W.P. // Phys. Rev. 1925. V. 25. P. 753.
  28. Kirkland A.I., Edwards P.P., Jefferson D.A., Duff D.G. // Annu. Rep. Prog. Chem. C. 1990. V. 87. P. 247. https://doi.org/10.1039/PC9908700247
  29. Kirkland A.I., Jefferson D.A., Duff D.G. et al. // Proc. R. Soc. Lond. A. 1993. V. 440. P. 589.
  30. Germain V., Li J., Ingert D. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8717.
  31. Morriss R.H., Bottoms W.R., Peacock R.G. // J. Appl. Phys. 1968. V. 39. P. 3016.
  32. Cherns D. // Philos. Mag. 1974. V. 30. P. 549.
  33. Castaño V., Gómez A., José Yacamán M. // Surface Sci. Lett. 1984. V. 146. № 2. P. L587. https://doi.org/10.1016/0167-2584(84)90756-4
  34. Reyes-Gasga J., Gómez-Rodríguez A., Gao X., Yacamán M.J. // Ultramicroscopy. 2008. V. 108. P. 929. https://doi.org/10.1016/j.ultramic.2008.03.005
  35. Mendoza-Ramirez M.C., Silva-Pereyra H.-G., Avalos-Borja M. // Mater. Characterization. 2020. V. 164. P. 110313.
  36. Midgley P.A., Eggeman A.S. // IUCrJ. 2015. V. 2. P. 126. https://doi.org/10.1107/S2052252514022283
  37. Palatinus L., Brázda P., Jelínek M. et al. // Acta Cryst. B. 2019. V. 75. № 4. P. 512. https://doi.org/10.1107/S2052520619007534
  38. Liu J., Niu Wenxin., Liu G. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4387.
  39. Park G.-S., Min K.S., Kwon H. et al. // Adv. Mater. 2021. Article 2100653. P. 1.
  40. Huang X., Li H., Li S. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 12245.
  41. Jany B., Gauquelin N., Willhammar T. et al. // Sci. Rep. 2017. V. 7. P. 42420. https://doi.org/10.10/srep42420

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Light-field image of gold nanoparticles on a carbon grid (a), VFPEM image of one of the rounded nanoparticles (b), arrows show twinning boundaries, a square indicates the region from which a two-dimensional Fourier spectrum was obtained (inset). The spectrum corresponds to the electronogram from HCC-Au in the [111] projection of the crystal lattice

Жүктеу (442KB)
3. Fig. 2. VRPEM images of hexagonal (a) and triangular (b) particles. Typical electronogram obtained from such particles (c) and two-dimensional Fourier spectrum (d)

Жүктеу (748KB)
4. Fig. 3. HRPEM image of the nanoparticle (a), enlarged image of the crystal lattice (b), corresponding two-dimensional Fourier spectrum (c), calculated electronogram corresponding to 4H HCC-Au (d)

Жүктеу (448KB)
5. Fig. 4. VFPEM image of the nanoparticle after tilting by 52º relative to the position shown in Fig. 3a, (a); enlarged image of the crystal lattice of region 1 after filtration (b); two-dimensional Fourier spectrum from region 1 (c); enlarged image of the crystal lattice of region 2 after filtration (d); two-dimensional Fourier spectrum from region 2 (e)

Жүктеу (152KB)
6. Fig. 5. HRPEM image of a gold nanoparticle presumably with trigonal morphology (a); enlarged image of the crystal lattice of the region highlighted by a square (b); two-dimensional Fourier spectrum from this region (c)

Жүктеу (219KB)
7. Fig. 6. Visualization of the distribution of clustered peaks in the a*b* (a) and b*c* (b, c) backspace projections: a, b - all peaks, c - peaks indexed in the hexagonal cell a = 2.8843(8), c = 7.083(3) Å

Жүктеу (180KB)
8. Fig. 7. Diffractogram from powder - dried sol with gold nanoparticles. Curve - experimental data, vertical lines - reflections corresponding to HCC-Au (PDF-2 03-065-2870)

Жүктеу (110KB)

© Russian Academy of Sciences, 2024