Defect crystal structure of α-Na0.5–xR0.5+xF2+2x (R = Dy–Lu, Y) on X-Ray and electron diffraction data. II. Defect structure of the α-Na0.4R0.6F2.2 (R = Ho–Lu, Y) nanostructured crystals
- Авторлар: Sulyanova E.A.1, Sobolev B.P.1, Nikolaichik V.I.2, Avilov A.S.1
-
Мекемелер:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Institute of Microelectronics Technology and High Purity Materials RAS
- Шығарылым: Том 69, № 6 (2024)
- Беттер: 938-953
- Бөлім: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673611
- DOI: https://doi.org/10.31857/S0023476124060034
- EDN: https://elibrary.ru/YIECYM
- ID: 673611
Дәйексөз келтіру
Аннотация
The α-Na0.4R0.6F2.2 crystals (R = Ho–Lu, Y) were studied by X-ray diffraction analysis at 293 and 85 K. A unified cluster model of nanostructured crystals with a fluorite-type structure based on the polymorphism of KR3F10 (R = Er, Yb) was used to model their defect structure. The α-Na0.4R0.6F2.2 matrix component contained Na+ and R3+ in a ratio of 1 : 1. Part of the matrix anions was shifted from 8c to 32f position (sp. gr. Fm3m). Excess R3+ cations formed with Na+ octa-cubic clusters with nuclei in the form of cuboctahedra {F12} formed by interstitial anions at the 48i position. The α-Na0.4R0.6F2.2 cluster component was formed by octa-cubic clusters of type i. The electron diffraction method showed that the clusters had the shape of plates about 5 nm thick with superstructural ordering. Their structural model based on the K0.265Gd0.735F2.47 structure was proposed. For the first time, experimental confirmation of the affiliation of α-Na0.5–xR0.5+xF2+2x to nanostructured crystals was obtained by electron diffraction. When the temperature decreases from 293 to 85 K, the type of cluster component of the defect α-Na0.4R0.6F2.2 structure with R = Ho–Lu, and Y was not change. At 293 K, the boundary of the type change of the defect structure in the α-Na0.5–xR0.5+xF2+2x series was located between R = Dy (with the Z = 66 atomic number) and Ho (with Z = 67). When the temperature drops from 293 to 85 K, the position of the boundary was not change.
Толық мәтін

Авторлар туралы
E. Sulyanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Хат алмасуға жауапты Автор.
Email: sulyanova.e@crys.ras.ru
Ресей, Moscow
B. Sobolev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: sulyanova.e@crys.ras.ru
Ресей, Moscow
V. Nikolaichik
Institute of Microelectronics Technology and High Purity Materials RAS
Email: sulyanova.e@crys.ras.ru
Ресей, Moscow Region, Chernogolovka
A. Avilov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: sulyanova.e@crys.ras.ru
Ресей, Moscow
Әдебиет тізімі
- Сульянова Е.А., Соболев Б.П., Николайчик В.И. и др. // Кристаллография. 2024. Т. 69. № 5. С. 772. https://doi.org/10.31857/S0023476124050036
- Sulyanova E.A., Sobolev B.P. // CrystEngComm. 2022. V. 24. P. 3762. https://doi.org/10.1039/D2CE00280A
- Sulyanova E.A., Sobolev B.P. // J. Phys. Chem. C. 2024. V. 128. № 10. P. 4200. https://doi.org/10.1021/acs.jpcc.3c08137
- Соболев Б.П., Минеев Д.А., Пашутин В.П. // Докл. АН СССР. 1963. Т. 150. № 4. С. 791.
- Liu Y., Lu Y., Yang X. et al. // Nature. 2017. V. 543. P. 229. https://doi.org/10.1038/nature21366
- Oleksa V., Mackova H., Engstova H. et al. // Sci. Rep. 2021. V. 11. P. 21273. https://doi.org/10.1038/s41598-021-00845-y
- Chen G., Shen j., Ohulchanskyy T.Y. et al. // ACS Nano. 2012. V. 6. № 9. P. 8280. https://doi.org/10.1021/nn100457j
- Tan M., del Rosal B., Zhang Y. et al. // Nanoscale. 2018. V. 10. P. 17771. https://doi.org/10.1039/C8NR02382D
- Quintanilla M., Hemmer E., Marques-Hueso J. et al. // Nanoscale. 2022. V. 14. P. 1492. https://doi.org/10.1039/d1nr06319g
- Pontonnier L., Patrat G., Aleonard S. et al. // Solid State Ionics. 1983. V. 9–10. № 1. P. 549. https://doi.org/10.1016/0167-2738(83)90293-X
- Pontonnier L. Relations entre la Structure et les Proprietés de Conductivite Ionique des Solutions Solides à Structure Fluorine Excendentaire en Anions Na0.5–xY0.5+xF2+2x. These. Grenoble, 1985. 196 p.
- Pontonnier L., Aleonard S., Roux M.T. // J. Solid State Chem. 1987. V. 69. № 1. P. 10. https://doi.org/10.1016/0022-4596(87)90003-X
- Pontonnier L., Patrat G., Aleonard S. // J. Solid State Chem. 1990. V. 87. № 1. P. 124. https://doi.org/10.1016/0022-4596(90)90073-7
- Журова Е.А., Максимов Б.А., Халл С. и др. // Кристаллография. 1997. Т. 42. № 2. С. 277.
- Otroshchenko L.P., Fykin L.E., Bystrova A.A. et. al. // Crystallography Reports. 2000. V. 45. № 6. P. 926.
- Кривандина Е.А., Быстрова А.А., Соболев Б.П. и др. // Кристаллография. 1992. Т. 37. № 6. С. 1523.
- Sobolev B.P. Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors. Barcelona: Institut d’Estudis Catalans, 1994. 265 p.
- Petricek V., Palatinus L., Plášil J., Dusek M. // Z. Kristallogr. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023-0005
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129. https://doi.org/10.1107/S0567739474000337
- International Tables for Crystallography V.C. / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
- Соболев Б.П., Голубев А.М., Эрреро П. // Кристаллография. 2003. Т. 48. № 1. С. 148.
- Казанский С.А. // Письма в ЖЭТФ. 1983. Т. 38. № 9. P. 430.
- Aleonard S., Guitel J.C., Roux M. Th. // J. Solid State Chem. 1978. V. 24. P. 331. https://doi.org/10.1016/0022-4596(78)90024-5
- Aleonard S., Guitel J.C., Le FurY. et al. // Acta Cryst. B. 1976. V. 32. № 12. P. 3227. https://doi.org/10.1107/S0567740876010005
- Мурадян Л.А., Максимов Б.А., Симонов В.И. // Координац. химия. 1986. Т. 12. № 10. С. 1398.
- Le Fur Y., Khaidukov N.M., Aleonard S. // Acta Cryst. C. 1992. V. 48. P. 978. https://doi.org/10.1107/S010827019101394X
- Grzechnik A., Khaidukov N., Friesec K. // Dalton Trans. 2013. V. 42. P. 441. https://doi.org/10.1039/C2DT31483E
- Sobolev B.P., Sulyanova E.A. // Int. J. Mol. Sci. 2023. V. 24. № 23. P. 17013. https://doi.org/10.3390/ijms242317013
- Le Fur Y., Aleonard S., Gorius M.F. et al. // Z. Kristallogr. 1988. V. 182. P. 281. https://doi.org/10.1524/zkri.1988.182.14.281
- Maksimov B.A., Solans Kh., Dudka A.P. et al. // Crystallography Reports. 1996. V. 41. P. 56.
- Achary S.N., Patwe S.J., Tyagi A.K. // Powder Diffr. 2002. V. 17. № 3. P. 225. https://doi.org/10.1154/1.1477198
- Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 554. https://doi.org/10.1134/S1063774509030249
- Сульянова Е.А., Верин И.А., Соболев Б.П. // Кристаллография. 2012. Т. 57. № 1. С. 79. https://doi.org/10.1134/S1063774512010130
- Федоров П.П., Александров В.Б., Бондарева О.С. и др. // Кристаллография. 2001. Т. 46. № 2. С. 280.
- Gleiter H. // Acta Mater. 2000. V. 48. P. 1. https://doi.org/10.1016/S1359-6454(99)00285-2
- Vogt T. // Neues Jahrb. Mineral. 1914. V. 2. № 1. P. 9.
- Goldschmidt V.M., Barth T., Lunde G. et al. Geochemische Verteilungsgesetze der Elemente. Part VII. Die Gesetze der Chrysatllochemie; Jacob Dybwad, Kristiania: Oslo, 1926. V. 7. P. 1.
- Александров В.Б., Гарашина Л.С. // Докл. АН СССР. 1969. Т. 189. № 2. С. 307.
- Cheetham A.K., Fender B.E.F., Steele D. et al. // Solid State Commun. 1970. V. 8. № 3. P. 171. https://doi.org/10.1016/0038-1098(70)90073-6
- Cheetham A.K., Fender B.E.F., Cooper M.J. // J. Phys. C. 1971. V. 4. № 18. P. 3107. https://doi.org/10.1088/0022-3719/4/18/016
Қосымша файлдар
