Defect crystal structure of α-Na0.5-xR0.5+xF2+2x (R = Dy-Lu, Y) on X-Ray and electron diffraction data. I. MethoD of Defect structure modelling on the α-Na0.35Dy0.65F2.30 example

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For the first time, the crystal α-Na0.35Dy0.65F2.30 was studied using X-ray diffraction at 293 K and 85 K and electron diffraction at 293 K. A unified cluster model of the defective structure of nanostructured crystals with a fluorite-type structure, based on the polymorphism of ordered phases KR3F10 (R = Er, Yb), was expanded with a matrix part model based on the structure of the KYF4 compound. The unified cluster model was applied to construct the defective structure of α-Na0.35Dy0.65F2.30. It was found that the matrix part of the crystal contains Na+ и Dy3+ cations in a 1:1 ratio. Some of the anions in the matrix are displaced to the 32f positions (space group Fm3m). The excess Dy3+ forms octahedral-cubic clusters with Na+ [Na14–nDynF64+n] with cores in the form of distorted and regular cuboctahedrons {F12}. These are composed of interstitial anions in two 32f positions and one 48i position. The cluster component of the α-Na0.35Dy0.65F2.30 crystal contains octahedral-cubic clusters of f-, fi- and i-types. Electron diffraction showed that α-Na0.35Dy0.65F2.30 is a nanostructured crystal. Its cluster component is in the form of plate-like inclusions about 5 nm thick with superstructural ordering and individual octahedral-cubic clusters. A model of their structure was proposed. Lowering the temperature to 85 K increases the number of interstitial F(32f)1 anions in the matrix component of the crystal.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Sulyanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: sulyanova.e@crys.ras.ru
Ресей, Moscow

B. Sobolev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: sulyanova.e@crys.ras.ru
Ресей, Moscow

V. Nikolaichik

Institute of Microelectronics Technology Problems and High Purity Materials RAS

Email: sulyanova.e@crys.ras.ru
Ресей, 142432 Chernogolovka

A. Avilov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: sulyanova.e@crys.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. Li H., Bai G., Lian Y. et al. // Mater. Design. 2023. V. 231. P. 112036. https://doi.org/10.1016/j.matdes.2023.112036
  2. Соболев Б.П., Минеев Д.А., Пашутин В.П. // Докл АН СССР. 1963. Т. 150. № 4. С. 791.
  3. Степанов А.В., Северов Е.А. // Докл. АН СССР. 1961. Т. 141. № 4. С. 954.
  4. Воронков А.А., Шумацкая Н.Г., Пятенко Ю.А. // Журн. структур. химии. 1962. Т. 3. № 6. С. 691.
  5. Burns J.H. // Inorg. Chem. 1965. V. 4. № 6. P. 881. https://doi.org/10.1021/ic50028a025
  6. Kumar D., Sharma S.K., Verma S. et al. // Mater. Today: Proc. 2020. V. 21. P. 1868. https://doi.org/10.1016/j.matpr.2020.01.243
  7. Федоров П.П., Кузнецов С.В., Воронов В.В. и др. // Журн. неорган. химии. 2008. Т. 53. № 11. С. 1802. https://doi.org/10.1134/S0036023608110028
  8. Федоров П.П., Соболев Б.П., Белов С.Ф. // Изв. АН СССР. Неорган. материалы. 1979. Т. 15. № 5. С. 816.
  9. Федоров П.П. // Журн. неорган. химии. 1999. Т. 44. № 11. С. 1792.
  10. Sobolev B.P. The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of the Rare Earth Trifluorides. Institute of Crystallography, Moscow; Institute d’Estudis Catalans, Barcelona. Barcelona: Institut d’Estudis Catalans, Spain, 2000.
  11. Журова Е.А., Максимов Б.А., Халл С. и др. // Кристаллография. 1997. Т. 42. № 2. С. 277.
  12. Отрощенко Л.П., Фыкин Л.Е., Быстрова А.А. и др. // Кристаллография. 2000. Т. 45. № 6. С. 1006.
  13. Соболев Б.П., Голубев А.М., Эрреро П. // Кристаллография. 2003. Т. 48. № 1. С. 148. https://doi.org/10.1134/1.1541755
  14. Кривандина Е.А., Быстрова А.А., Соболев Б.П. и др. // Кристаллография. 1992. Т. 37. Вып. 6. С. 1523.
  15. Bagdasarov Kh.S., Voronko Yu.K., Kaminskii A.A. et al. // Phys. Status. Solidi. 1965. 12. P. 905. https://doi.org/10.1002/pssb.19650120233
  16. Казанский С.А. // Письма в ЖЭТФ. 1983. Т. 38. Вып. 9. P. 430.
  17. Fridman E., Low W. // J. Chem. Phys. 1960. V. 33. № 4. P. 1275. https://doi.org/10.1063/1.1731391
  18. Мацулев А.Н., Бузник В.М., Лифшшиц А.И. и др. // ФТТ. 1987. Т. 29. Вып. 11. С. 3247.
  19. Kadlec F., Moussa F., Simon P. et al. // Solid State Ionics. 1999. V. 119. № 1–4. P. 131.
  20. Pontonnier L. Relations entre la Structure et les Proprietés de Conductivite Ionique des Solutions Solides à Structure Fluorine Excendentaire en Anions Na0.5–xY0.5+xF2+2x. These. Grenoble, 1985. 196 p.
  21. Pontonnier L., Aleonard S., Roux M.T. // J. Solid State Chem. 1987. V. 69. № 1. Р. 10. https://doi.org/10.1016/0022-4596(87)90003-X
  22. Pontonnier L., Patrat G., Aleonard S. et al. // Solid State Ionics. 1983. V. 9–10. № 1. P. 549. https://doi.org/10.1016/0167–2738(83)90293-X
  23. Pontonnier L., Patrat G., Aleonard S. // J. Solid State Chem. 1990. V. 87. № 1. P. 124. https://doi.org/10.1016/0022-4596(90)90073-7
  24. Sobolev B.P. Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors. Arxius Sec. Cien. IEC (Institut d’Estudis Catalans). V. 110. Barcelona, Spain, 1994 (2nd Edition 1995). 265 p.
  25. Главин Г.Г., Карпов Ю.А. // Заводская лаборатория. 1964. Т. 30. № 3. С. 306.
  26. Главин Г.Г., Карпов Ю.А., Олжатаев Б.А. // Заводская лаборатория. 1969. Т. 35. № 2. С. 172.
  27. Petricek V., Palatinus L., Plášil J., Dusek M. // Z. Kristallogr. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023–0005
  28. Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129. https://doi.org/10.1107/S0567739474000337
  29. International Tables for Crystallography. Vol. C. / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
  30. Федоров П.П., Александров В.Б., Бондарева О.С. и др. // Кристаллография. 2001. Т. 46. № 2. С. 280.
  31. Le Fur Y., Khaidukov N.M., Aleonard S. // Acta Cryst. C. 1992. V. 48. P. 978. https://doi.org/10.1107/S010827019101394X
  32. Grzechnik A., Khaidukov N., Friesec K. // Dalton Trans. 2013. V. 42. P. 441. https://doi.org/10.1039/C2DT31483E
  33. Grzechnik A., Nuss J., Friese Κ. et al. // Ζ. Kristallogr. 2002. V. 217. P. 460. https://doi.org/10.1524/ncrs.2002.217.1.460
  34. Sulyanova E.A., Sobolev B.P. // CrystEngComm. 2022. V. 24. P. 3762. https://doi.org/10.1039/D2CE00280A
  35. Максимов Б.А., Соланс Х., Дудка А.П. и др. // Кристаллография. 1996. Т. 41. № 1. С. 51.
  36. Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 516.
  37. Sulyanova E.A., Sobolev B.P. // J. Phys. Chem. C. 2024 V. 128. № 10. P. 4200. https://doi.org/10.1021/acs.jpcc.3c08137
  38. Aleonard S., Guitel J.C., Le Fur Y. et al. // Acta Cryst B. 1976. V. 32. № 12. P. 3227. https://doi.org/10.1107/S0567740876010005
  39. Aleonard S., Guitel J.C., Roux M. Th. // J. Solid State Chem. 1978. V. 24. P. 331. https://doi.org/10.1016/0022-4596(78)90024-5
  40. Roy D.M., Roy R. // J. Electrochem. Soc. 1964. V. 111. P. 421. https://doi.org/10.1149/1.2426145
  41. Golubev A.M., Fedorov P.P., Bondareva O.S. et al. // Soviet Physics Crystallography. 1991. V. 36. № 3. P. 363.
  42. Thoma R.E., Herbert G.M., Insley H. et al. // Inorg. Chem. 1963. V. 2. № 5. P. 1005. https://doi.org/10.1021/ic50009a030
  43. Голубев А.М., Федоров П.П., Бондарева О.С. и др. // Кристаллография. 1992. Т. 37. Вып. 3. С. 576.
  44. Das P.P., Palatinus L., Bürgia H.-B. et al. // Acta Cryst. A. 2010. V. 66. P. s213. https://doi.org/10.1107/S0108767310095188
  45. Das P.P. α-“NaLuF4”: a Structure with Sixfold Twinning, Modulation and Diffuse Scattering. Structure Determination and Disorder Modelling. Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich, 2012.
  46. Zalkin A., Templeton D.H. // J. Am. Chem. Soc. 1953. V. 75. № 10. P. 2453. https://doi.org/10.1021/ja01106a052
  47. Nowacki W. // Z. Kristallogr. 1938. B. 100. № 3. S. 242. https://doi.org/10.1524/zkri.1939.100.1.242
  48. Голубев А.М., Гарашина Л.С., Закалюкин Р.М. и др. // Журн. неорган. химии. 2004. Т. 49. № 2. С. 266.
  49. Louër D., Boultif A. // Powder Diffr. 2014. V. 29. P. 7. https://doi.org/10.1017/S0885715614000906
  50. Le Fur Y., Aleonard S., Gorius M.F. et al. // Z. Kristallogr. 1988. V. 182. P. 281. https://doi.org/10.1524/zkri.1988.182.14.281

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Pain. 1. Crystal α–Na0.5–xR0.5+xF2+2x (R = Dy-Lu, Y).

Жүктеу (333KB)
3. Fig. 2. Fourier difference maps of the electron density α-Na0.65Dy0.35F2.30 in the plane (110) at 293 (a) and 85 K (b). The step of the isolines is 0.2 Å–3.

Жүктеу (448KB)
4. Fig. 3. Electron diffraction patterns of the sample α-Na0.35Dy0.65F2.30, projections along the axes of the zones: a – [100], b – [110], c – deflected [110], d – [111]. The oblique arrows indicate the diffuse scattering lines.

Жүктеу (581KB)
5. Fig. 4. Octahedron-cubic cluster in the structure of fluorite nanostructured crystals: a – i-type, b – f-type, c – f–i-type.

Жүктеу (190KB)
6. 5. The matrix cluster in the KRF4 structure (R = Y, Ho, Er, Tm, Yb) (a) and its octahedral part (b). The core of the {F8} cluster consisting of four anions F(8c), three anions F(48i) and one anion F(32f)3 (b).

Жүктеу (265KB)
7. Fig. 6. Structure: a – β-KYb3F10, constructed from f–i-type clusters; b – β-KEr3F10 from alternating layers of octahedrocubic clusters of i- and f–i-types; c – α-KY3F10 from i-type clusters.

Жүктеу (299KB)
8. Fig. 7. Dependence of the configuration of an octahedron-cubic cluster in a nanostructured crystal with a fluorite–type structure on: a - RF3 concentration, b – atomic number Z REE.

Жүктеу (388KB)
9. Figure 8. Model of the cluster component of the defective structure α-Na0.35Dy0.65F2.30, containing an octahedron-cubic cluster: a – f-type, b – hybrid f–i-type, c–i-type.

Жүктеу (251KB)
10. Fig. 9. The structure of K0.265Gd0.735F2.47 (a). A model of the structure of ordered phase microinclusions in α-Na0.35Dy0.65F2.30 based on the structure K0.265Gd0.735F2.47 (b).

Жүктеу (372KB)

© Russian Academy of Sciences, 2024