Crystals of 4,7-bis(2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole and Its Derivative with Terminal n-Hexyl Substitutes: Growth, Structure, Thermal and Absorption-Fluorescent Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study presents an investigation into the crystallization and absorptive-fluorescent properties of linear conjugated molecules derived from 2,1,3-benzothiadiazole, specifically 4,7-bis(2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole (Ph-Xy-BTD) and 4,7-bis(4'-hexyl-2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole (Hex-Ph-Xy-BTD). The synthesis of a new derivative of Hex-Ph-Xy-BTD is described. It was found that the presence of terminal n-hexyl substituents in Hex-Ph-Xy-BTD leads to a lower melting point, increased solubility and has a positive effect on crystallization compared to Ph-Xy-BTD. Single crystals of Hex-Ph-Xy-BTD were grown from hexane solution, and their structure was elucidated using single-crystal X-ray diffraction, confirming a monoclinic system (space group P21/c, Z = 4). Absorption and fluorescence spectra were obtained and analyzed for solutions in tetrahydrofuran as well as for the crystals of Ph-Xy-BTD and Hex-Ph-Xy-BTD, alongside investigations of quantum yield and fluorescence lifetime.

Texto integral

Acesso é fechado

Sobre autores

V. Postnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: postva@yandex.ru
Rússia, Moscow

N. Sorokina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

G. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

Т. Сорокин

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

A. Kylishov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

M. Lyasnikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

V. Popova

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Rússia, Moscow

E. Svidchenko

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Rússia, Moscow

N. Surin

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Rússia, Moscow

O. Borshchev

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: borshchev@ispm.ru
Rússia, Moscow

Bibliografia

  1. Skorotetcky M.S., Krivtsova E.D., Borshchev O.V. et al. // Dye. Pigment. 2018. V. 155. P. 284. https://doi.org/10.1016/j.dyepig.2018.03.043
  2. Taylor D., Malcomson T., Zhakeyev A. et al. // Org. Chem. Front. 2022. V. 9. P. 5473. https://doi.org/10.1039/d2qo01316a
  3. Kostyuchenko A.S., Uliankin E.B., Stasyuk A.J. et al. // J. Org. Chem. 2023. V. 88. P. 5875. https://doi.org/10.1021/acs.joc.3c00286
  4. Kono T., Kumaki D., Nishida J.I. // Chem. Mater. 2007. V. 19. P. 1218. https://doi.org/10.1021/cm062889+
  5. Bei Q., Zhang B., Wang K. et al. // Chinese Chem. Lett. 2024. V. 35. P. 108438. https://doi.org/10.1016/j.cclet.2023.108438
  6. Bhagyanath P.K., Angela M., Asit H. // Mater. Adv. 2024. V. 5. P. 3323. https://doi.org/10.1039/d4ma00068d
  7. Postnikov V.A., Sorokina N.I., Kulishov A.A. et al. // ACS Omega. 2024. V. 9. P. 14932. https://doi.org/10.1021/acsomega.3c08543
  8. Surin N.M., Svidchenko E.A., Skorotetskii M.S. et al. // Russ. J. Phys. Chem. A. 2024. V. 98. P. 448. https://doi.org/10.1134/S0036024424030294
  9. Постников В.А., Юрасик Г.А., Кулишов А.А. и др. // Кристаллография. 2021. Т. 66. С. 967. https://doi.org/10.31857/s0023476121060266
  10. Sonntag M., Strohriegl P. // Tetrahedron Lett. 2006. V. 47. P. 8313. https://doi.org/10.1016/j.tetlet.2006.09.089
  11. Постников В.А., Сорокина Н.И., Кулишов А.А. и др. // Кристаллография. 2023. Т. 68. С. 120. https://doi.org/10.31857/S0023476123010228
  12. Postnikov V.A., Sorokina N.I., Kulishov A.A. et al. // Acta Cryst. B. 2019. V. 75. P. 1076. https://doi.org/10.1107/S2052520619012484
  13. Rigaku Oxford Diffraction. CrysAlisPro Software System: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
  14. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  15. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604. https://doi.org/10.1107/S0108767304022433
  16. Demas J.N., Crosby G.A. // J. Phys. Chem. 1971. V. 75. P. 991. https://doi.org/10.1021/j100678a001
  17. Berlman I.B. Handbook of florescence spectra of Aromatic Molecules. 2d ed. N.Y.; London: Academic Press, 1971. 473 p.
  18. Уббелоде А.Р. Расплавленное состояние вещества. М.: Мир, 1969. 420 с.
  19. Kaminsky W. // J. Appl. Cryst. 2007. V. 40. P. 382. https://doi.org/10.1107/S0021889807003986

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Rice. 1. Synthesis scheme for Hex-Ph-Xy-BTD.

Baixar (57KB)
3. Fig. 2. DSC curves for Hex-Ph-Xy-BTD (1) and Ph-Xy-BTD (2).

Baixar (72KB)
4. Fig. 3. Ph-Xy-BTD crystals: on graph paper (a) and fluorescent image of a crystalline aggregate (b).

Baixar (337KB)
5. Fig. 4. Hex-Ph-Xy-BTD crystals: under UV illumination (a), confocal image of a faceted crystal (b) and its images in fluorescence mode (c) and in differential interference contrast mode (d).

Baixar (400KB)
6. Fig. 5. Conformation of the Hex-Ph-Xy-BTD molecule in the ORTEP representation with indication of torsion angles between conjugated groups (thermal ellipsoids with a probability level of 50%).

Baixar (152KB)
7. Fig. 6. Structure of Hex-Ph-Xy-BTD crystals: projection of the structure onto the (010) plane (a), projection of molecules in adjacent closest rows onto the (001) plane with the shortest H H and C-H π contacts indicated (b), diagram of the shortest contacts between nearest neighbors (c).

Baixar (399KB)
8. Fig. 7. Element of a crystalline monolayer in the orientation of the (100) plane (a) and software reconstruction of the Hex-Ph-Xy-BTD crystal habit (b).

Baixar (224KB)
9. Fig. 8. X-ray powder diffraction patterns for Ph-Xy-BTD (1) and Hex-Ph-Xy-BTD (2).

Baixar (84KB)
10. Fig. 9. Normalized absorption and fluorescence spectra of Ph-Xy-BTD (a) and Hex-Ph-Xy-BTD (b) in THF solution and in a thin polycrystalline film (without reabsorption). Selection of the absorption band of fluorescence centers (band I) in a thin polycrystalline film. Excitation was carried out in the long-wave absorption maximum.

Baixar (325KB)
11. Fig. 10. Normalized absorption and fluorescence spectra of Ph-Xy-BTD (a) and Hex-Ph-Xy-BTD (b) of thin (1) and bulk (2) crystals. Excitation was carried out at the long-wave absorption maximum.

Baixar (265KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024