Bi nanostructures obtained on Si substrates by thermal evaporation method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Bi low dimensional structures were obtained on the Si(100) substrates by thermal evaporation method in Ar. Bi nanocrystals and nanowires were condensed on the Si substrates at 10–20 s deposition time. Computer processing of SEM-images was used to determine the sizes of Bi nanocrystals and microcrystals and their distribution densities. The distribution density of nanocrystals was larger than its the microcrystals by a factor of 85–260. The increase of deposition time up to 20 s reduced the nanocrystal density by a factor of 2 with the increase of their sizes. X-ray diffraction analysis revealed oxide layers on the Bi nanocrystals and the Si substrates. The decrease in the sizes of the Bi nanocrystals and the increase in their density on the Si substrates in comparison with those on glassy carbon substrates were observed.

Texto integral

Acesso é fechado

Sobre autores

G. Kozhemyakin

Vladimir Dal Lugansk State University

Autor responsável pela correspondência
Email: genakozhemyakin@mail.ru
Rússia, Lugansk

S. Kiiko

Vladimir Dal Lugansk State University

Email: genakozhemyakin@mail.ru
Rússia, Lugansk

A. Kiiko

Vladimir Dal Lugansk State University

Email: genakozhemyakin@mail.ru
Rússia, Lugansk

V. Artemov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: genakozhemyakin@mail.ru
Rússia, Moscow

I. Volchkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: genakozhemyakin@mail.ru
Rússia, Moscow

Bibliografia

  1. Saikawa K. // J. Phys. Soc. Jpn. 1970. V. 29. P. 562. https://doi.org/10.1143/JPSJ.29.562
  2. Hofmann Ph. // Prog. Surf. Sci. 2006. V. 81. P. 191. https://doi.org/10.1016/j.progsurf.2006.03.001
  3. Эдельман В.С. // Успехи физ. наук. 1977. Т. 123. С. 257. https://doi.org/10.3367/UFNr.0123.197710d.0257
  4. Gonze X., Michenaud J.-P., Vigneron J.-P. // Phys. Rev. B. 1990. V. 41. P. 11827. https://doi.org/10.1103/physrevb.41.11827
  5. Hicks L.D., Harman T.C., Dresselhaus M.S. // Appl. Phys. Lett. 1993. V. 63. P. 3230. https://doi.org/10.1063/1.110207
  6. Lin Y.-M., Sun X., Dresselhaus M.S. // Phys. Rev. B. 2000. V. 62. P. 4610. https://doi.org/10.1103/physrevb.62.4610
  7. Zhang Z., Sun X., Dresselhaus M.S. et al. // Appl. Phys. Lett. 1998. V. 73. P. 1589. https://doi.org/10.1063/1.122213
  8. Heremans J., Thrush C.-M., Lin Y.-M. et al. // Phys. Rev. B. 2000. V. 61. P. 2921. https://doi.org/10.1103/physrevb.61.2921
  9. Heremans J., Thrush C.M., Morelli D.T. et al. // Phys. Rev. Lett. 2002. V. 88. P. 216801. https://doi.org/10.1103/physrevlett.88.216801
  10. Koroteev Yu.M., Bihlmayer G., Chulkov E.V. et al. // Phys. Rev. B. 2008. V. 77. P. 045428. https://doi.org/10.1103/PhysRevB.77.045428
  11. Dong F., Xiong T., Sun Y. et al. // Chem. Commun. 2014. V. 50. P. 10386. https://doi.org/10.1039/c4cc02724h
  12. Jiménez de Castro M., Cabello F., Toudert J. et al. // Appl. Phys. Lett. 2014. V. 105. P. 113102. https://doi.org/10.1063/1.4895808
  13. Ghobadi A., Hajian H., Gokbayrak M. et al. // Nanophotonics. 2019. V. 8. P. 823. https://doi.org/10.1515/nanoph-2018-0217
  14. Ozbay I., Ghobadi A., Butun B. et al. // Opt. Lett. 2020. V. 45. P. 686. https://doi.org/10.1364/OL.45.000686
  15. Cuadrado A., Toudert J., Serna R. // IEEE Photonics J. 2016. V. 8. P. 1. https://doi.org/10.1109/JPHOT.2016.2574777
  16. Tanaka A., Hatano M., Takahashi K. et al. // Surf. Sci. 1999. V. 433–435. P. 647. https://doi.org/10.1016/S0039-6028(99)00088-6
  17. Du H., Sun X., Liu X. et al. // Nat. Commun. 2016. V. 7. P. 10814. https://doi.org/10.1038/ncomms10814
  18. Liu X., Du H., Wang J. et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 185002. https://doi.org/10.1088/1361-648x/aa655a
  19. Kawakami N., Lin Ch.-L., Kawai M. et al. // Appl. Phys. Lett. 2015. V. 107. P. 31602. https://doi.org/10.1063/1.4927206
  20. Wang J., Wang X., Peng Q. et al. // Inorg. Chem. 2004. V. 43. P. 7552. https://doi.org/10.1021/ic049129q
  21. Zhong G., Zhou H., Zhang J. // Mater. Lett. 2005. V. 59. P. 2252. https://doi.org/10.1016/j.matlet.2005.02.074
  22. Wang Q., Jiang C., Cao D. et al. // Mater. Lett. 2007. V. 61. P. 3037. https://doi.org/10.1016/j.matlet.2006.10.069
  23. Кожемякин Г.Н., Брыль О.Е., Панич Е.А. и др. // Кристаллография. 2019. Т. 64. № 2. С. 308. https://doi.org/10.1134/S0023476119020188
  24. Герега В.А., Суслов А.В., Комаров В.А. и др. // Физика и техника полупроводников. 2022. Т. 56. Вып. 1. С. 42. https://doi.org/10.21883/FTP.2022.01.51810/26
  25. Takayama A., Sato T., Souma S. et al. // Phys. Rev. Lett. 2015. V. 114. P. 066402. https://doi.org/10.1103/PhysRevLett.114.066402
  26. Kozhemyakin G.N., Kovalev S.Y. // Adv. Mater. Lett. 2021. V. 12. № 7. P. 21071646. https://doi.org/10.5185/amlett.2021.071646
  27. Otsu N. // IEEE Trans. Syst. Man. Cyber. 1979. V. 9. P. 62. https://doi.org/10.1109/tsmc.1979.4310076
  28. Кожемякин Г.Н., Кийко А.В., Кийко С.А. и др. // Металлы. 2021. № 1. С. 79. https://doi.org/10.1134/S0036029521010079
  29. Физические величины: Справочник / Под ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991. 1232 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM image of Bi nano- and microcrystals on a Si(110) substrate with a deposition time of 15 s (a); a rhombohedral Bi nanocrystal (b).

Baixar (321KB)
3. Fig. 2. Diffraction pattern of Bi nano- and microcrystals with a deposition time of 20 s.

Baixar (80KB)
4. Fig. 3. Relative quantity (N) of Bi nano- and microcrystals at deposition time: a, b – 10, c, d – 15, d, e – 20 s.

Baixar (250KB)
5. Fig. 4. Dependence of the relative amount (N) of Bi nanocrystals (a) and microcrystals (b) on the shape factor kф.

Baixar (127KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024