Atomistic simulation of paratellurite α-teo2 crystal: i. Defects and ionic transport

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure and defects of α-TeO2 paratellurite crystals have been studied using computer modeling. It has been shown that in α-TeO2 the preferred point defects are oxygen vacancies and interstitial oxygen ions. Oxygen vacancies can be either isolated or form complex clusters. It is energetically most favorable for interstitial oxygen ions to be located in channels that penetrate the paratellurite structure along the c-axis. The origin of possible oxygen–ion transport in α-TeO2 is discussed.

Full Text

Restricted Access

About the authors

A. K. Ivanov-Schitz

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: alexey.k.ivanov@gmail.com
Russian Federation, Moscow

References

  1. Кондратюк И.П., Мурадян Л.А., Писаревский Ю.В. и др. // Кристаллография. 1987. Т. 32. С. 609.
  2. Thomas P.A. // J. Phys. C. 1988. V. 21. P. 4611. http://stacks.iop.org/0022-3719/21/i=25/a=009
  3. Дудка А.П., Головина Т.Г., Константинова А.Ф. // Кристаллография. 2019. Т. 64. С. 930. https://doi.org/10.1134/S0023476119060043
  4. Ceriotti M., Pietrucci F., Bernasconi M. // Phys. Rev. B. 2006. V. 73. P. 104304. https://doi.org/10.1103/PhysRevB.73.104304
  5. Champarnaud-Mesjard J.C., Blanchandin S., Thomas P. et al. // J. Phys. Chem. Solids. 2000. V. 61. P. 1499. https://doi.org/10.1016/S0022-3697(00)00012-3
  6. Малютин С.А., Саплавская К.К., Карапетьянц М.Х. // Журн. неорган. химии. 1971. Т. 16. С. 781.
  7. Deringer V.L., Stoffel R.P., Dronskowski R. // Cryst. Growth Des. 2014. V. 14. P. 871. http://doi.org/10.1021/cg401822g
  8. Uchida N., Ohmachi Y. // J. Appl. Phys. 1969. V. 40. P. 4692. https://doi.org/10.1063/1.1657275
  9. Arlt G., Schweppe H. // Solid State Commun. 1968. V. 6. P. 783. https://
  10. Gupta N., Voloshinov V. // Opt. Lett. 2005. V. 30. P. 985. https://doi.org/10.1364/OL.30.000985
  11. Wang P., Zhang Z. // Appl. Opt. 2017. V. 56. P. 1647. https://doi.org/10.1364/AO.56.001647
  12. El-Mallawany R.A.H. Tellurite Glasses Handbook: Physical Properties and Data; CRC Press: Boca Raton, FL, 2002.
  13. Li Y., Fan W., Sun H. et al. // J. Appl. Phys. 2010. V. 107. P. 093506. https://doi.org/10.1063/1.3406135
  14. Liu Z., Yamazaki T., Shen Y. et al. // Appl. Phys. Lett. 2007. V. 90. P. 173119. https://doi.org/10.1063/1.2732818
  15. Ковальчук М.В., Благов А.Е., Куликов А.Г. и др. // Кристаллография. 2014. Т. 59. С. 950.
  16. Куликов А.Г. // Образование приповерхностных структур в кристаллах парателлурита и тетрабората лития при миграции носителей заряда во внешнем электрическом поле. Дис. … канд. физ.-мат. наук. Москва. 2019.
  17. Dick B.G., Overhauser A.W. // Phys. Rev. 1958. V. 112. P. 90.
  18. Torzuoli L., Bouzid A., Thomas P., Masson O. // Mater. Res. Express. 2020. V. 7. P. 015202. https://doi.org/10.1088/2053-1591/ab6128
  19. Mayo S.L., Olafson B.D., Goddard W.A. // J. Phys. Chem. 1990. V. 94. P. 8897. http://dx.doi.org/10.1021/j100389a010
  20. Gulenko A., Masson O., Berghout A. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 14150. https://doi.org/10.1039/c4cp01273a
  21. Achouri M.M., Ziani N., Bouamrane R., Abderrahmane A. // Indian J. Phys. 2018. V. 92. P. 1373. https://doi.org/10.1007/s12648-018-1232-2
  22. Gale J.D., Rohl A.L. // Mol. Simul. 2003. V. 29. P. 291. http://dx.doi.org/10.1080/ 0892702031000104887
  23. Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1932. V. 34. P. 485.
  24. Smith W., Todorov I.T., Leslie M. // Z. Kristallogr. 2005. B. 220. S. 563. https://doi.org/10.1524/zkri.220.5.563.65076
  25. Silvestrova I.M., Pisarevskii Y.V, Senycshenkov P.A. et al. // Phys. Status Solidi. А. 1987. V. 101. P. 437. https://doi.org/10.1002/pssa.2211010215
  26. Ledbetter H., Leisure R.G., Migliori A. et al. // J. Appl. Phys. 2004. V. 96. P. 6201. https://doi.org/10.1063/1.1805717
  27. Ohmachi Y., Uchida N. // J. Appl. Phys. 1970. V. 41. P. 2307. https://doi.org/10.1063/1.1659223
  28. Jain H., Nowick A.S. // Phys. Status Solidi. А. 1981. V. 67. P. 701. https://doi.org/10.1002/pssa.2210670242
  29. Mezaki R., Margrave J.L. // J. Phys. Chem. 1962. V. 62. P. 66. https://doi.org/10.1021/j100815a037
  30. Pashinkin A.S., Rabinovich I.B., Sheiman M.S. et al. // J. Chem. Thermodynamics. 1985. V. 17. P. 43. https://doi.org/10.1016/0021-9614(85)90030-8
  31. Wegener J., Kanert О., Küchler R. et al. // Z. Naturforsch. А. 1994. B. 49. S. 1151. https://doi.org/10.1515/zna-1994-1208
  32. Wegener J., Kanert O., Küchler R. et al. // Rad. Eff. Defects Solids. 1995. V. 114. P. 277.
  33. Hartmann E., Kovács L. // Phys. Status Solidi. А. 1982. V. 74. P. 59. https://doi.org/10.1002/pssa.2210740105

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Crystal structure of α-TeO2: in the (bc) plane (a), in the (ab) plane (b). O1…O4, Te1…Te4 are the atomic numbers, d1, d2 are the Te–O bonds. In Fig. (b), the letter A marks the “square” through channels that penetrate the structure along the c axis.

Download (101KB)
3. Fig. 2. RPCF of ideal α-TeO2 at a temperature of 300 K, the numbers on the curves indicate the maxima of the corresponding RPCF peaks for the first and second coordination spheres (a); 1 – calculation at 900 K, 2 – calculation at 1200 K (b).

Download (133KB)
4. Fig. 3. RPCF of paratellurite at 300 K for an ideal crystal (1) and a sample with 15 oxygen vacancies (2).

Download (88KB)
5. Fig. 4. RPCF of defective paratellurite with five interstitial oxygen atoms in type A channels at temperatures of 300 (1) and 1100 K (2).

Download (86KB)
6. Fig. 5. Lattice parameters of TeO2 with different degrees of defectiveness in the temperature range of 1100–1500 K: 1 – stoichiometric composition, 2 – five oxygen vacancies, 3 – 10 interstitial oxygen atoms, 4 – 15 oxygen vacancies.

Download (92KB)
7. Fig. 6. Temperature dependences of oxygen diffusion coefficients for TeO2 with different degrees of defectiveness: 1 – five oxygen vacancies, 2 – 15 oxygen vacancies, 3 – five interstitial oxygen ions, 4 – 10 interstitial oxygen ions, 5 – five tellurium vacancies. The numbers near the straight lines are the diffusion activation energies.

Download (80KB)

Copyright (c) 2024 Russian Academy of Sciences