Spectral-luminescence and scintillation properties of p-terphenyl single crystal grown from melt

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the study of the photoluminescent and X-ray luminescent properties of the p-terphenyl crystalline element made from a single crystal grown from a melt using the Bridgman method are presented. The transmission, photoluminescence and X-ray luminescence spectra of the crystals were obtained and analyzed. The kinetics of photoluminescence and X-ray luminescence decay have been studied for p-terphenyl single crystal and the absolute light yield of X-ray luminescence has been determined.

Texto integral

Acesso é fechado

Sobre autores

M. Lyasnikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: mlyasnikova@yandex.ru
Rússia, Moscow

A. Kylishov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”,

Email: postva@yandex.ru
Rússia, Moscow

G. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

D. Karimov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”,

Email: postva@yandex.ru
Rússia, Moscow

V. Postnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

A. Voloshin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Rússia, Moscow

Bibliografia

  1. Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p.
  2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. М.: Химия, 1984. 336 с.
  3. Дудник А.В., Андрющенко Л.А., Тарасов В.А. и др. // Приборы и техника эксперимента. 2015. № 2. С. 41. https://doi.org/10.7868/s003281621502007x
  4. Лясникова М.С., Кулишов А.А., Юрасик Г.А. и др. // Кристаллография. 2023. Т. 68. № 4. С. 628. https://doi.org/10.31857/S0023476123600271
  5. Ried W., Freitag D. // Angew. Chem. 1968. V. 80. P. 932. https://doi.org/10.1002/ange.19680802203
  6. Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 801. https://doi.org/10.1134/s0023476118050247
  7. Berlman I.B. Handbook of florescence spectra of Aromatic Molecules. N.Y.; London: Academic Press, 1971. 473 p.
  8. Katoh R., Katoh S., Furube A. et al. // J. Phys. Chem. C. 2009. V. 113. P. 2961. https://doi.org/10.1021/jp807684m
  9. Bell Z.W. Scintillators and Scintillation Detectors. Chapter in Handbook of Particle Detection and Imaging. Second Edition. 2021. P. 413. https://doi.org/10.1007/978-3-319-93785-4_15
  10. Yanagida T., Watanabe K., Fujimoto Y. // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 784. P. 111. https://doi.org/10.1016/j.nima.2014.12.031
  11. Scriven D.P., Christian G., Rogachev G.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1010. P. 165492. https://doi.org/10.1016/j.nima.2021.165492
  12. Selvakumar S., Sivaji K., Balamurugan N. et al. // J. Cryst. Growth. 2005. V. 275. P. e265. https://doi.org/10.1016/j.jcrysgro.2004.10.120
  13. Ai Q., Chen P., Feng Y. et al. // AIP Conf. Proc. 2017. V. 1879. P. 030002. https://doi.org/10.1063/1.5000464
  14. Ai Q., Chen P., Xu Y. et al. // Crystals. 2023. V. 13. P. 2. https://doi.org/10.3390/cryst13010002
  15. Yang W., Han P., Zhu S. et al. // ACS Appl. Electron. Mater. Am. Chem. Soc. 2024. V. 6. P. 4223. https://doi.org/10.1021/acsaelm.4c00328
  16. Vojna D., Karimov D.N., Ivanova A.G. et al. // Opt. Mater. 2023. V. 142. P. 114016. https://doi.org/10.1016/j.optmat.2023.114016
  17. Rodnyi P.A., Mikhrin S.B., Mishin A.N. et al. // IEEE Trans. Nucl. Sci. 2001. V. 48. P. 2340. https://doi.org/10.1109/23.983264
  18. Постников В.А., Кулишов А.А., Островская А.А. и др. // ФТТ. 2019. Т. 61. № 12. С. 2432. https://doi.org/10.21883/ftt.2019.12.48572.45ks
  19. Braem O., Penfold T.J., Cannizzo A. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 3513. https://doi.org/10.1039/c2cp23167k
  20. Hong Y., Lam J.W.Y., Tang B.Z. // Chem. Commun. 2009. № 29. P. 4332. https://doi.org/10.1039/b904665h
  21. Selvakumar S., Sivaji K., Arulchakkaravarthi A. et al. // Mater. Lett. 2007. V. 61. P. 4718. https://doi.org/10.1016/j.matlet.2007.03.018

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. A single crystal of p-terphenyl grown from a melt (a) and an optical element made from it (b).

Baixar (243KB)
3. Fig. 2. X-ray diffraction pattern of a single-crystal sample (1) and a powder diffraction pattern (2) reconstructed based on the data of a single-crystal experiment [6].

Baixar (64KB)
4. Fig. 3. Transmission spectrum of a single-crystal p-terphenyl element.

Baixar (56KB)
5. Fig. 4. Absorption and PL spectra of a solution of p-terphenyl in cyclohexane and PL and X-ray spectra of a single crystal of p-terphenyl.

Baixar (151KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024