Effect of different gaseous mediums in the process of microwave pyrolysis carbonization of cellulose on the properties of the obtained activated carbon

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A comparative study of the characteristics of high-molecular organic matter (cotton lint) subjected to pyrolytic carbonisation under conditions of high-intensity microwave radiation in various gaseous media (N2, CO2, Ar) has been conducted. The methods employed included the determination of adsorption activity through the use of a methylene blue indicator, X-ray fluorescence analysis, transmission electron microscopy with microanalysis, and X-ray phase analysis. Electrodes derived from carbon materials produced through microwave carbonisation with varying gases were constructed, and symmetric cells were assembled in accordance with the two-electrode configuration. The electrochemical properties were investigated using cyclic voltammetry and galvanostatic charge-discharge methods. The results demonstrated that the materials obtained using a CO₂ gaseous medium exhibited the most optimal characteristics.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Dyachkova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Хат алмасуға жауапты Автор.
Email: sig74@mail.ru
Ресей, Moscow

D. Zolotov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Ресей, Moscow

A. Kumskov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Ресей, Moscow

I. Volchkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Ресей, Moscow

E. Matveev

FSBSI “Research Institute of Advanced Materials and Technologies”

Email: sig74@mail.ru
Ресей, Moscow

V. Berestov

FSBSI “Research Institute of Advanced Materials and Technologies”

Email: sig74@mail.ru
Ресей, Moscow

V. Asadchikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Савельева Ю.Р., Кряжов А.Н., Богомолов М.С. и др. // Химия растительного сырья. 2003. № 4. С. 61.
  2. Yakout S., El-Deen G.S. // Arab. J. Chem. 2016. V. 9. P. 1155. https://doi.org/10.1016/j.arabjc.2011.12.002
  3. Kosheleva R.I., Mitropoulos A.C., Kyzas G.Z. // Environ. Chem. Lett. 2019. V. 17. P. 429. https://doi.org/10.1007/s10311-018-0817-5
  4. Yahya M.A., Al-Qodah Z., Ngah C.W.Z. // Renew. Sust. Energ. Rev. 2015. V. 46. P. 218. https://doi.org/10.1016/j.rser.2015.02.051
  5. Асадчиков В.Е., Дьячкова И.Г., Золотов Д.А. и др. // Кристаллография. 2022. Т. 67. № 4. С. 597. https://doi.org/10.31857/S002347612204004X
  6. Дьячкова И.Г., Золотов Д.А., Кумсков А.С. и др. // Успехи физ. наук. 2023. T. 193. № 12. C. 1325. https://doi.org/10.3367/UFNr.2023.02.039323
  7. Villota E.M., Lei H., Qian M. et al. // ACS Sustainable Chem. Eng. 2018. V. 6. № 1. P. 1318. https://doi.org/10.1021/acssuschemeng.7b03669
  8. Gopinath A., Kadirvelu K. // Environ. Chem. Lett. 2018. V. 16. P. 1137. https://doi.org/10.1007/s10311-018-0740-9
  9. ГОСТ 4453-74 “Уголь активный осветляющий древесный порошкообразный: технические условия”: Государственный стандарт Союза ССР: дата введения 01.01.1976. М.: Издательство стандартов, 1993. 21 с.
  10. Асадчиков В.Е., Бузмаков А.В., Дымшиц Ю.М. и др. Установка для топо-томографических исследований образцов. Пат. № 2674584 (Россия). 2018.
  11. Gates-Rector S., Blanton T. // Powder Diffr. 2019. V. 34. № 4. P. 352. https://doi.org/10.1017/S0885715619000812
  12. Ardizzone S., Fregonara G., Trasatti S. // Electrochim. Acta. 1990. V. 35. № 1. P. 263. https://doi.org/10.1016/0013-4686(90)85068-X
  13. Bartelmess J., Giordani S. // Beilstein J. Nanotechnol 2014. V. 5. № 1. P. 1980. https://doi.org/10.3762/bjnano.5.207
  14. Zeiger M., Jäckel N., Mochalin V.N., Presser V. // J. Mater. Chem. A. 2016. V. 4. № 9. P. 3172. https://doi.org/10.1039/c5ta08295a
  15. Дьячкова И.Г., Золотов Д.А., Кумсков А.С. и др. // ЖТФ. 2024. T. 94. № 6. C. 871. https://doi.org/10.61011/JTF.2024.06.58128.266-23
  16. Trucano P., Chen R. // Nature. 1975. V. 258. P. 136. https://doi.org/10.1038/258136a0
  17. Kratschmer W., Lamb L., Fostiropoulos K., Huffman D. // Nature. 1990. V. 347. P. 354. https://doi.org/10.1038/347354a0
  18. Rao G.N., Sastry V.S., Premila M. et al. // Powder Diffr. 1996. V. 11. № 1. P. 5. https://doi.org/10.1017/S0885715600008782
  19. Самонин В.В., Никонова В.Ю., Ким А.Н., Грун Н.А. // Изв. СПбГТИ (ТУ). 2010. № 8. С. 77.
  20. Березкин В.И., Викторовский И.В., Вуль А.Я. и др. // Физика и техника полупроводников. 2003. Т. 37. № 7. С. 802.
  21. Fayos J. // J. Solid State Chem. 1999. V. 148. № 2. P. 278. https://doi.org/10.1006/jssc.1999.8448
  22. Correia S.F., Fu L., Dias L.M. et al. // Nanoscale Adv. 2023. V. 5. № 13. P. 3428. https://doi.org/10.1039/d3na00136a

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. TEM image of a sample carbonized in a CO2 environment: a – general view of a particle with inclusions, area of ​​elemental mapping (Fig. 2a), b – amorphous particle with high magnification, c – carbon onion-shaped (fullerene-like) particles, d – multi-walled carbon nanotubes.

Жүктеу (978KB)
3. Fig. 2. Element distribution map (a) and energy-dispersive X-ray spectrum (b) of a sample carbonized in a CO2 environment.

Жүктеу (164KB)
4. Fig. 3. Bright-field STEM image of a sample carbonized in an N2 environment: a – general view of a particle with inclusions, area of ​​elemental mapping (Fig. 4a), b – general view of nano-onions, c – onion-like structure of carbon (high resolution).

Жүктеу (404KB)
5. Fig. 4. Element distribution map (a) and energy-dispersive X-ray spectrum (b) of a sample carbonized in an N2 environment.

Жүктеу (147KB)
6. Fig. 5. TEM image of a sample carbonized in an Ar environment: a – general view of a particle with inclusions, area of ​​elemental mapping (Fig. 6a), b – amorphous particle with high resolution.

Жүктеу (500KB)
7. Fig. 6. Element distribution map (a) and energy-dispersive X-ray spectrum (b) of a sample carbonized in an Ar environment.

Жүктеу (140KB)
8. Fig. 7. X-ray fluorescence spectra of the studied samples in gaseous media: 1 – CO2, 2 – N2, 3 – Ar. Peaks Ar (air) and Fe (collimator) – hardware.

Жүктеу (122KB)
9. Fig. 8. Diffraction patterns of the studied samples in gaseous media: 1 – N2, 2 – CO2, 3 – Ar and bar charts of the corresponding phases.

Жүктеу (177KB)
10. Fig. 9. Dependences of specific capacitance on the sweep speed during CVA (a) and on the specific current during GZR (b) for electrodes obtained using different gas environments.

Жүктеу (121KB)
11. Fig. 10. Results of the study using the Trasatti method.

Жүктеу (65KB)
12. Fig. 11. Reagon diagram.

Жүктеу (74KB)

© Russian Academy of Sciences, 2024