STUDY OF THE FORMATION OF RADIATION-STIMULATED IMPURITY DEFECTS IN CaF2CRYSTALS ACTIVATED BY TRIVALENT RARE-EARTH IONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ionizing radiation gives rise to impurity defects in activated crystals due to the transition of impurity ions from the trivalent to divalent state. An approach is proposed for studying the influence of the energy position of R3+ ions in the energy-band structure of СaF2 crystals on the degree of stability of rare-earth ions in the divalent state as a result of the transition of 4fn electronic states of R3+ → R2+ ions under ionizing irradiation. The processes of direct and reverse photochromism occurring on impurity defects, which are related, respectively, to the coloring of activated crystals under γ irradiation and their bleaching under UV irradiation, have been studied. A mechanism of photochromic transformation taking into account the participation of radiation-induced color centers (CCs) in this process is proposed. The valence transition R3+ → R2+ is considered in terms of photooxidation reaction. The possibilities and conditions of the ion transformation reaction in dependence of the type of ionizing radiation acting on R3+-containing crystals are analyzed based on calculations of the change in the Gibbs energy.

About the authors

S. E. Sarkisov

National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia

Email: Yusim_VA@nrcki.ru
Россия, Москва

V. A. Yusim

National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast, 141700 Russia

Email: Yusim_VA@nrcki.ru
Россия, Москва; Россия, Долгопрудный

Yu. V. Pisarevsky

National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Author for correspondence.
Email: Yusim_VA@nrcki.ru
Россия, Москва; Россия, Москва

References

  1. Brandon S., Derby J.J. // J. Cryst. Growth. 1991. V. 110. P. 481.
  2. Siegel R., Howell J.R. // Thermal Radiation Heat Transfer. 2-nd Edition. Washington: Hemispher Publishing Corp., 1981. P. 24.
  3. Сивухин Д.В. Общий курс физики. Оптика. М.: Физматлит. МФТИ, 2002. Т. 4. 792 с.
  4. Юсим В.А. Дис. “Разработка новых принципов выращивания и управления радиационным дефектообразованием в структурах кристаллов фторидов”… канд. техн. наук. Долгопрудный: Переплетофф, 2022. 240 с.
  5. Мельников М.Я., Иванов В.Л. Экспериментальные методы химической кинетики. Фотохимия: Учеб. пособие. М.: Изд-во МГУ, 2004. 125 с.
  6. Ганкин В.Ю., Ганкин Ю.В. Как образуется химическая связь и протекают химические реакции. Институт теоретической химии. М.: Граница, 2007. 323 с.
  7. Thiel C.W., Cruguel H., Wu H. et al. // Phys. Rev B. 2001. V. 64. P. 085107. https://doi.org/10.1103/PhysRevB.64.085107
  8. Родный П.А., Ходюк И.В., Стрыганюк Г.Б. // ФТТ. 2008. Т. 50. Вып. 9. С. 1578.
  9. Pack D.W., Manthey W.J., McClure D.S. // Phys. Rev. B. 1989. V. 40. № 14. P. 9930.
  10. Manthey W.J. // Phys. Rev. B. 1973. V. 8. № 9. P. 4086.
  11. Van Pieterson L., Reid M.F., Burdick G.W., Meijerink A. // Phys. Rev. B. 2002. V. 65. № 4. P. 045114. https://doi.org/10.1103/PhysRevB.65.045114
  12. Loh E. // Phys. Rev. 1967. V. 154. № 2. P. 270.
  13. Cotton S. The Lanthanides – Principles and Energetics Lanthanide and Actinide Chemistry. John Wiley & Sons, Ltd, 2006. P. 9. https://doi.org/10.1002/0470010088
  14. Catlow C.R. // J. Phys. C. 1979. V. 13. № 6. P. 969.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (55KB)
3.

Download (38KB)
4.

Download (36KB)
5.

Download (39KB)
6.

Download (60KB)
7.

Download (24KB)
8.

Download (25KB)
9.

Download (16KB)

Copyright (c) 2023 Russian Academy of Sciences