CRYSTAL AND MOLECULAR STRUCTURE OF THE ISLAND TETRANUCLEAR DIOXOMOLYBDENUM(VI) COMPLEX [MoO2(L1)]4 (H2L1 IS ACETYLACETONE ISONICOTINOYLHYDRAZONE) WITH LARGE INTRA- AND INTERMOLECULAR CHANNELS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The solvated complex [МоО2(L1)]4dimethylformamide (I) was synthesized. Its structure was
determined by X-ray diffraction analysis. The crystal structure is composed of the tetranuclear complexes [МоО2(L1)]4 (Ia) as the structural units lying on crystallographic twofold axes. Both crystallographically independent molybdenum atoms are in a distorted octahedral coordination environment formed by two cis-О(oxo) ligands, two N(L1) atoms of two molecules Ia in trans positions to the О(oxo) ligands, and two О(L1) atoms of one complex molecule in cis positions to О(oxo) and trans to each other. Each (L1)2– ligand is coordinated to two Мо atoms in a tetradentate tridentate-chelating (2О, N) bridging (N) mode. The average bond lengths in complex Iа are as follows: Мо–О(oxo), 1.701 Å; Мо–N(L1), 2.460 (b) and 2.214 Å (c); Мо–О(L1), 1.980 Å. The О(oxo)–МоО–(oxo) bond angle is 105.6°. The ordered dimethylformamide molecule is located in a narrow channel in the structure. The strongly disordered (non-located) solvent molecules (methanol/dimethylformamide/water) occupy wide channels in the structure of I.

作者简介

V. Sergienko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia

Email: sergienko@igic.ras.ru
Россия, Москва

V. Abramenko

Lugansk Vladimir Dal State University, Lugansk, Russia

Email: sergienko@igic.ras.ru
Россия, Луганск

A. Churakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia

编辑信件的主要联系方式.
Email: sergienko@igic.ras.ru
Россия, Москва

参考

  1. Kargar H., Kia R., Froozandeh F. et al. // Acta Cryst. E. 2011. V. 67. P. o209. https://doi.org/org/10.1107/S160053681005275X
  2. Kargar H., Kia R., Moghadamm M., Tahir M.N. // Acta Cryst. E. 2011. V. 67. P. o367. https://doi.org/org/10.1107/S1600536811000948
  3. Paciorek P., Szklarzewicz J., Trzewik B. et al. // J. Org. Chem. 2021. V. 86. P. 1649. https://doi.org/10.1021/acs.joc.0c02451
  4. Коган В.А., Зеленцов В.В., Ларин Г.М., Луков В.В. Комплексы переходных металлов с гидразонами. Физико-химические свойства и строение. М.: Наука, 1990. 112 с.
  5. Гарновский А.Д., Васильченко И.С., Гарновский Д.А. Современные аспекты синтеза металлокомплексов. Основные лиганды и методы. Ростов-на-Дону: ЛаПО, 2000. 355 с.
  6. Banße W., Ludwig E., Shilde U., Uhlemann E. // Z. Anorg. Allg. Chem. 1995. B. 621. № 8. S. 1275.
  7. Nandy M., Shit S., Rizzoli C. et al. // Polyhedron. 2015. V. 88. P. 63. https://doi.org/org/10.1016/j.poly.2014.12.017
  8. Bikas R., Darvishvand M., Kuncser V. et al. // Polyhedron. 2020. V. 190. P. 114751. https://doi.org/10.1016/j.poly.2020.114751
  9. Hosseini-Monfared H., Bikas R., Sanchiz J. et al. // Polyhedron. 2013. V. 61. P. 45. https://doi.org/10.1016/j.poly.2013.05.033
  10. Goorchibeygi S., Bikas R., Soleimani M. // J. Mol. Struct. 2022. V. 1250. Pt 1. P. 131774. https://doi.org/10.1016/j.molstruc.2021.131774
  11. Бурлов А.С., Власенко В.Г., Чальцев Б.В. и др. // Координац. химия. 2021. Т. 47. № 7. С. 391. https://doi.org/10.31857/S0132344X2107001X
  12. Hossain S.M., Lakma A., Pradhan R.N. // Dalton Trans. 2017. V. 46. № 37. P. 12612. https://doi.org/10.1039/c7dt02433a
  13. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1732. https://doi.org/10.31857/S0044457X21120151
  14. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. общ. химии. 2022. Т. 92. № 6. С. 954. https://doi.org/10.31857/S0044460X22060142
  15. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  16. Sheldrick G.M. // Acta. Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  17. Spek A.T. // Acta Cryst. C. 2015. V. 71. P. 9.
  18. Vrdoliak V., Mandaric M., Hrenar T. et al. // Cryst. Growth Design. 2019. V. 19. P. 3000. https://doi.org/10.1021./acs.cgd.9b00231
  19. Vrdoliak V., Prugovecki B., Malkovic-Calogovic D. et al. // Cryst. Growth Design. 2013. V. 13. P. 3773. https://doi.org/10.1921/cg400782c
  20. Vrdoliak V., Prugovecli B., Malkovic-Calogovic D. et al. // Cryst. Growth Design. 2010. V. 10. P.1373. https://doi.org/10.1021/cg901382h
  21. Sutton A., Abrahams B.F., Hudson T.A., Robson R. // New. J. Chem. 2020. V. 44. P. 11437. https://doi.org/10.1039/d0nj02413a
  22. McCormick L.J., Abrahams B.F., Boughton B.A. // Inorg. Chem. 2014. V. 53. P. 1721. https://doi.org/10.1021/ic402860r
  23. Nandy M., Shit S., Rizzoli C. et al. // Polyhedron. 2015. V. 88. P. 63.
  24. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1732. https://doi.org/10.31857/S0044457X21120151

补充文件

附件文件
动作
1. JATS XML
2.

下载 (13KB)
3.

下载 (377KB)
4.

下载 (349KB)
5.

下载 (2MB)

版权所有 © Russian Academy of Sciences, 2023