FILLING OF CHANNELS OF THE ZEOLITE FRAMEWORK IN TRIGONAL POLAR NONABORATE Ва3Na0.9(OH)1.9[B9O16][B(OH)3]

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Crystals of the new trigonal borate Ва3Na0.9(OH)1.9[B9O16][B(OH)3] (sp. gr. P31c, a =10.23684(15) Å, c = 8.72926(13) Å) were prepared by the mild hydrothermal synthesis. The filling of the channels in the framework of the polar nonaborate was found to differ from that determined previously. It is consistent with the main features of this structure type with the preservation of sassoline molecules in the channels. The structure contains an additional ОН group, which is involved in the coordination of Ва.

Sobre autores

A. Topnikova

Lomonosov Moscow State University, Moscow, 119991 Russia

Email: nastya_zorina@rambler.ru
Россия, Москва

E. Belokoneva

Lomonosov Moscow State University, Moscow, 119991 Russia

Email: nastya_zorina@rambler.ru
Россия, Москва

O. Dimitrova

Lomonosov Moscow State University, Moscow, 119991 Russia

Email: nastya_zorina@rambler.ru
Россия, Москва

A. Volkov

Lomonosov Moscow State University, Moscow, 119991 Russia

Email: nastya_zorina@rambler.ru
Россия, Москва

L. Zorina

Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia

Autor responsável pela correspondência
Email: nastya_zorina@rambler.ru
Россия, Черноголовка

Bibliografia

  1. The Cambridge Crystallographic Data Centre (CCDC). Inorganic Crystal Structure Data Base – ICSD. https://www.ccdc.cam.ac.uk/, http://www.fiz-karlsruhe.de
  2. Crystallography Open Database. crystallography.net/cod
  3. Christ C.L., Clark J.R. // Phys. Chem. Miner. 1977. V. 2. P. 59.
  4. Liu L., Su X., Yang Y. et al. // Dalton Trans. 2014. V. 43. P. 8905.
  5. Smith R.W., Keszler D.A. // Mater. Res. Bull. 1989. V. 24. P. 725.
  6. Bubnova R.S., Krivovichev S.V., Filatov S.K. et al. // J. Solid State Chem. 2007. V. 180. P. 596.
  7. Белоконева Е.Л., Стефанович С.Ю., Димитрова О.В. // Кристаллография. 2012. Т. 57. С. 70.
  8. Wei Q., Sun L., Zhang J., Yang G.-Y. // Dalton Trans. 2017. V. 46. P. 7911.
  9. Heyward C., McMillen C.D., Kolis J. // J. Solid State Chem. 2013. V. 203. P. 166.
  10. Chen X., Wu L., Chang X., Xiao W. // Solid State Sci. 2014. V. 27. P. 47.
  11. Топникова А.П., Белоконева Е.Л. // Успехи химии. 2019. Т. 88. № 2. С. 204.
  12. Белоконева Е.Л., Стефанович С.Ю., Димитрова О.В. и др. // Кристаллография. 2009. Т. 54. № 5. С. 860.
  13. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  14. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
  15. Farrugia L.J. // J. Appl. Cryst. 2012. V. 45. P. 849.
  16. Белоконева Е.Л., Стефанович С.Ю., Борисова Т.А., Димитрова О.В. // Журн. неорган. химии. 2001. Т. 46. С. 1788.
  17. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3.
  18. Dowty E. ATOMS. Shape Software, Kingsport, Tennessee, USA, 2006.
  19. Grube H.H. // Fortsch. Mineral. 1981. B. 59. S. 58.
  20. Lu J., Shi G., Wu H. et al. // RSC Adv. 2017. V. 7. P. 20259.
  21. Wu Ch., Song J., Li L. et al. // J. Mater. Chem. C. 2016. V. 4. P. 8189.
  22. Wei Q., Wang J.-J., He Ch. et al. // Chem. Eur. J. Commun. 2016. V. 22. P. 10759.
  23. Wu Ch., Jiang X., Lin L. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 52. P. 27151.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (235KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023