IN-LINE METHOD OF X-RAY PHASE-CONTRAST MICRO-CT USING A WIDE-FOCUS LABORATORY SOURCE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experimental implementation of the “in-line” method of X-ray phase contrast using a standard wide-focus X-ray tube as a polychromatic source is described. Using the proposed experimental scheme, in vitro tomographic measurements of a sample of human brain pineal gland are carried out, and the morphological structure of the soft tissues of this organ is visualized based on the results obtained. The advantage of phase-contrast tomography in comparison with traditional absorption tomography for studying the structural features of soft tissues is experimentally demonstrated. The “in-line” phase-contrast scheme, implemented on a laboratory setup, allows tomographic study of samples with linear dimensions of several millimeters and a resolution of ∼20 μm.

About the authors

Yu. S. Krivonosov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: Yuri.S.Krivonosov@yandex.ru
Россия, Москва

A. V. Buzmakov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: Yuri.S.Krivonosov@yandex.ru
Россия, Москва

V. E. Asadchikov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: Yuri.S.Krivonosov@yandex.ru
Россия, Москва

A. A. Fyodorova

Moscow Pedagogical State University, Moscow, 119571 Russia

Author for correspondence.
Email: Yuri.S.Krivonosov@yandex.ru
Россия, Москва

References

  1. Legland D., Alvarado C., Badel E. et al. // Appl. Sci. 2022. V. 12. № 7. P. 3454. https://doi.org/10.3390/app12073454
  2. Zhang X., Wei L., Yao L. et al. // Exp. Therm. Fluid Sci. 2022. P. 110771. https://doi.org/10.1016/j.expthermflusci.2022.110771
  3. Massimi L., Bukreeva I., Santamaria G. et al. // NeuroImage. 2019. V. 184. P. 490. https://doi.org/10.1016/j.neuroimage.2018.09.044
  4. Massimi L., Suaris T., Hagen C. K. et al. // Sci. Rep. 2021. V. 11. № 1. P. 1. https://doi.org/10.1038/s41598-021-83330-w
  5. Barbone G.E., Bravin A., Mittone A. et al. // Radiology. 2021. V. 298 (1). P. 135. https://doi.org/10.1148/radiol.2020201622
  6. Лидер В.В., Ковальчук М.В. // Кристаллография. 2003. Т. 58. № 6. С. 764. https://doi.org/10.7868/S0023476113050068
  7. Mayo S., Endrizzi M. Handbook of Advanced Non-Destructive Evaluation / Eds. Ida AG. N., Meyendorf N. Switzerland: Springer Nature, 2018. P. 1. https://doi.org/10.1007/978-3-319-30050-4_54-1
  8. Snigirev A., Snigireva I., Kohn V. et al. // Rev. Sci. Instrum. 1995. V. 66. P. 5486. https://doi.org/10.1063/1.1146073
  9. Cloetens P., Barrett R., Baruchel J. et al. // J. Phys. D: Appl. Phys. 1996. V. 29. № 1. P. 133. https://doi.org/10.1088/0022-3727/29/1/023
  10. Wilkins S.W., Gureyev T.E., Gao D. et al. // Nature. 1996. V. 384. P. 335. https://doi.org/10.1038/384335a0
  11. Brombal L., Kallon G., Jiang J. et al. // Phys. Rev. Appl. 2019. V. 11. № 3. P. 034004. https://doi.org/10.1103/PhysRevApplied.11.034004
  12. Massimi L., Suaris T., Hagen C. K. et al. // IEEE Trans. Med. Imaging. 2021. V. 41. № 5. P. 1188. https://doi.org/10.1109/TMI.2021.3137964
  13. Shaker K., Häggmark I., Reichmann J. et al. // Commun. Phys. 2021. V. 4 № 1. P. 1. https://doi.org/10.1038/s42005-021-00760-8
  14. Zhou S.A., Brahme A. // Phys. Med. 2008. V. 24. № 3. P. 129. https://doi.org/10.1016/j.ejmp.2008.05.006
  15. Peterzol A., Olivo A., Rigon L. et al. // Med. Phys. 2005.V. 32. № 12. P. 3617. https://doi.org/10.1118/1.2126207
  16. Krivonosov Yu.S., Asadchikov V.E., Buzmakov A.V. // Crystallography Reports. 2020. V. 65. № 4. P. 503. https://doi.org/10.1134/S1063774520040136
  17. Nesterets Y.I., Gureyev T.E., Dimmock M.R. // J. Phys. D: Appl. Phys. 2018. V. 51. № 11. P. 115402. https://doi.org/10.1088/1361-6463/aaacee
  18. López-Muñoz F., Boya J., Marín F. et al. // J. Pineal Res. 1996. V. 20. № 3. P. 115. https://doi.org/10.1111/j.1600-079x.1996.tb00247.x
  19. Kunz D., Schmitz S., Mahlberg R. et al. // Neuropsychopharmacology. 1999. V. 21. № 6. P. 765. https://doi.org/10.1016/S0893-133X(99)00069-X
  20. Paganin D., Mayo S.C., Gureyev T.E. et al. // J. Microsc. 2002. V. 206. № 1. P. 33. https://doi.org/10.1046/j.1365-2818.2002.01010.x
  21. Bukreeva I., Junemann O., Cedola A. et al. // J. Struct. Biol. 2020. V. 212. № 3. P. 107659. https://doi.org/10.1016/j.jsb.2020.107659
  22. Migga A., Schulz G., Rodgers G. et al. // J. Med. Imaging. 2022. V. 9. № 3. P. 031507. https://doi.org/10.1117/1.JMI.9.3.031507

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (125KB)
3.

Download (445KB)
4.

Download (1MB)
5.

Download (147KB)
6.

Download (1MB)

Copyright (c) 2023 Russian Academy of Sciences